DRAFT ONTARIO PRIVATE PASSENGER VEHICLES ANNUAL REVIEW
 Based on Industry Data Through December 31, 2022

6 July 2023

CONTENTS

1. Executive Summary 1
1.1. Purpose and Scope 1
1.2. Summary of Key Findings 1
1.3. Relevant Comments 2
1.4. Report Organization 4
2. Legislative Reforms and Government Actions6
2.1. History of Reforms6
2.2. Current Legislation - Background 6
3. Summary of Ontario Private Passenger Vehicle 2013 to 2022 Experience 10
3.1. Growth of Insured Vehicles. 10
3.2. Change in Average Premiums 12
3.3. Change in Average Claims Costs 14
4. Summary of Ontario Private Passenger Vehicle Premium Components 16
4.1. Components of Premium 16
4.2. Expense Components. 16
4.3. Reported Expenses 17
4.4. Investment Income 19
4.5. Profit 20
4.6. Realization of the 5\% of Premium Profit Provision. 21
5. GISA Reported Financial Data for Ontario Private Passenger Vehicles 23
5.1. GISA's Profit and Loss Exhibit- AUTO 9501 23
5.2. GISA's AUTO 9501 - Reported Financial Results 24
6. Analysis Data 26
6.1. Data 26
6.2. Estimating Ultimate Claim Counts and Ultimate Claim Amounts by Accident Half-Year - General Approach 27
6.3. Selection of Ultimate Loss Costs, Frequencies, and Severities 28
7. Loss Trend Methodology 33
7.1. Introduction 33
7.2. Past Trend - Model Considerations 33
7.3. Future Trend Considerations 43
8. Selected Loss Trend Rates 46
8.1. Bodily Injury 46
8.2. Property Damage 49
8.3. Direct Compensation Property Damage 52
8.4. Accident Benefits - Total 55
8.5. Collision 58
8.6. Comprehensive 61
8.7. All Perils 67
8.8. Specified Perils 70
8.9. Uninsured Auto 71
8.10. Underinsured Motorist 73
8.11. Trend Summary- All Coverages 75
Appendix A. Development Factor Exhibits 77
Appendix B. Loss Cost Summary Exhibits 78
Appendix C. Ultimate Claims and ALAE Exhibits 79
Appendix D. Ultimate Claim Count Exhibits 80
Appendix E. Trend Model Exhibits 81
Appendix F. Selected Trend Models 82
Appendix G. Inflation Impact on Physical Damage Severity. 83
Appendix H. "New Normal" Frequency Level 87
LIST OF TABLES
Table 1: Selected Loss Cost Trends 1
Table 2: Expense by Category (All Insurers) 18
Table 3: Total Expenses by Distribution Channel 18
Table 4: Ontario Pre-Tax Return on Investment Rate 19
Table 5: Comparison of Target to Realized 5\% Profit Provision 21
Table 6: Canadian Institute of Actuaries Range of Margin for Adverse Deviation 24
Table 7: Reported Financial Profit Before Income Taxes in Auto 9501 (in \$’000) 25
Table 8: Changes in Bodily Injury Estimated Loss Costs, Frequency and Severity 28
Table 9: Changes in Property Damage Estimated Loss Costs, Frequency and Severity. 28
Table 10: Changes in DCPD Estimated Loss Costs, Frequency and Severity 29
Table 11: Changes in AB Total Medical and Rehab Estimated Loss Costs, Frequency and Severity. 29
Table 12: Changes in AB Total Disability Income Estimated Loss Costs, Frequency and Severity 29
Table 13: Changes in AB Funeral \& Death Benefits Estimated Loss Costs, Frequency and Severity 30
Table 14: Changes in Collision Estimated Loss Costs, Frequency and Severity 30
Table 15: Changes in Estimated Comprehensive Loss Costs, Frequency and Severity 30
Table 16: Changes in All Perils Estimated Loss Costs, Frequency and Severity 31
Table 17: Changes in Specified Perils Estimated Loss Costs, Frequency and Severity. 31
Table 18: Changes in Uninsured Auto Estimated Loss Costs, Frequency and Severity 31
Table 19: Changes in Underinsured Motorist Estimated Loss Costs, Frequency and Severity 32
Table 20: Average Mobility Composite. 37
Table 21: Selected Loss Cost Trends - as of December 31, 2022 75
Table 22: Prior Selected Loss Cost Trends as of June 30, 2022 76
LIST OF FIGURES
Figure 1: Written Vehicles 10
Figure 2: Percent Purchasing Collision and Comprehensive Optional Coverages 11
Figure 3: Average Deductible Summary 12
Figure 4: Average Written Premium - Summary 13
Figure 5: Claim Costs - Summary 14
Figure 6: Loss Ratio - Summary 15
Figure 7: Distribution of Individual Insurer Year/Year Investment Returns (2018-2022) 20
Figure 8: Google Mobility Data 38
Figure 9: Consumer Price Index - All Items \& Transportation. 39
Figure 10: Consumer Price Index - Purchase \& Rental of Passenger Vehicle 40
Figure 11: Consumer Price Index - Passenger Vehicle Parts, Maintenance, and Repair \& Healthcare 41
Figure 12: Historical Severity by Coverage 43
Figure 13: IMF Forecasted Inflation. 45
Figure 14: Observed Bodily Injury Loss Cost Experience 46
Figure 15: Bodily Injury - Fitted Frequency, Severity and Loss Cost 49
Figure 16: Observed Property Damage Loss Cost Experience 50
Figure 17: Property Damage - Fitted Frequency, Severity and Loss Cost 52
Figure 18: Observed Direct Compensation Property Damage Loss Cost Experience 53
Figure 19: Direct Compensation Property Damage - Fitted Frequency, Severity and Loss Cost 55
Figure 20: Accident Benefits Total - Observed Frequency, Severity and Loss Cost 56
Figure 21: Accident Benefits Total - Fitted Frequency, Severity and Loss Cost 58
Figure 22: Observed Collision Loss Cost Experience 59
Figure 23: Collision - Fitted Frequency, Severity and Loss Cost. 61
Figure 24: Observed Comprehensive - Theft Loss Cost Experience 62
Figure 25: Comprehensive Theft- Fitted Loss Cost 63
Figure 26: Observed Comprehensive - All Other Loss Cost Experience 64
Figure 27: Comprehensive - All Other - Fitted Loss Cost 66
Figure 28: Comprehensive Total - Fitted Loss Cost 67
Figure 29: Observed All Perils Loss Cost Experience 68
Figure 30: All Perils - Fitted Frequency, Severity and Loss Cost 70
Figure 31: Observed Specified Perils Loss Cost Experience 71
Figure 32: Observed Uninsured Auto Loss Cost Experience 72
Figure 33: Uninsured Auto - Fitted Loss Cost 73
Figure 34: Observed Underinsured Motorist Loss Cost Experience 74
Figure 35: DCPD - Selected and Two Alternative Trend Models 84
Figure 36: Collision - Selected and Alternative Severity Trend Models 85
Figure 37: All Perils - Selected and Alternative Severity Trend Models 86
Figure 38: Bodily Injury - 2022-2 Frequency Level 87
Figure 40: DCPD - 2022-2 Frequency Level 88
Figure 41: Accident Benefits - 2022-2 Frequency Level 88
Figure 42: Collision - 2022-2 Frequency Level 89

1. Executive Summary

1.1. Purpose and Scope

The Financial Services Regulatory Authority (FSRA) of Ontario retained Oliver, Wyman Limited (Oliver Wyman) to review private passenger vehicle insurance experience in Ontario. Our review is based on the Ontario private passenger vehicle industry data compiled and presented by the General Insurance Statistical Agency (GISA) as of December 31, 2022. The specific objectives of our review include:

- A summary of changes in the number of vehicles insured, average premiums, and average loss costs per vehicle over the last ten years as reported by GISA as of December 31, 2022.
- A summary of historical expense costs, return on investment income rates, and profit levels as reported by insurers operating in Ontario.
- A review of GISA's estimated ultimate loss amounts and claim counts for private passenger vehicles using industry data as of December 31, 2022.
- The determination of loss trend rates that FSRA will use as benchmarks in its review of private passenger vehicle rate applications. Our analysis uses the GISA private passenger ultimate loss and loss adjustment expense data as of December 31, 2022 to determine past and future loss trend rates.

1.2. Summary of Key Findings

In Table 1, we present our selected annual loss cost trend rates based on insurance industry data as of December 31, 2022.

Table 1: Selected Loss Cost Trends

Coverage	Prior Trend Selection as of June 30, 2022	Current Trend Selection as of December 31, 2022
Bodily Injury	+1.6\% up to March 31, 2016 -4.2\% after April 1, 2016	+2.2\% up to March 31, 2016 -3.4\% after April 1, 2016
Property Damage	+4.9\%	+4.7\%
DCPD	+0.6\% up to December 31, 2012 +8.5\% after January 1, 2013	+0.5\% up to December 31, 2012 +8.8\% after January 1, 2013
Accident Benefits	+6.7\% up to May 31, 2016 -1.0% after June 1, 2016^{1}	$+6.8 \%$ up to May 31, 2016 -0.1% after June 1, 2016^{2}
Uninsured Auto	-9.2\% up to December 31, 2014 -0.6\% after January 1, 2015	-9.3\% up to December 31, 2014 +0.1\% after January 1, 2015
Collision	+8.7\%	+8.8\%
Comprehensive	+10.4\% ${ }^{3}$	+10.4\% ${ }^{4}$

[^0]| Coverage | Prior Trend Selection
 as of June 30, 2022 | Current Trend Selection
 as of December 31, 2022 |
| :--- | :---: | :---: |
| Specified Perils | $+10.4 \%^{5}$ | $+10.4 \%^{6}$ |
| All Perils | $+9.4 \%$ | $+10.0 \%$ |
| Underinsured Motorist | $+1.6 \%$ | $+2.2 \%$ |

1.3. Relevant Comments

Data

The data utilized in this study and presented in this report is based on industry experience published by the General Insurance Statistical Agency (GISA) that has been compiled by GISA's service provider, the Insurance Bureau of Canada (IBC), and estimates prepared by Ernst \& Young LLP (EY).

We have reviewed GISA's estimates of the ultimate loss amounts and claim counts. We find these estimates to be reasonable for our purpose of selecting loss trend rates and have adopted them for use in our analysis.

Our analysis reflects GISA aggregated experience of the insurance industry, which includes the Facility Association (FA). ${ }^{7}$ Our findings and analysis may not be appropriate for an individual insurance company whose portfolio of risks, rates, expenses, and operating characteristics may differ from the insurance industry averages that underlie our findings.

We refer to the insurance companies operating in Ontario, including the Facility Association, as the "Industry"; and we refer to the aggregate claim or expense experience as "Industry experience."

Loss Trend Benchmarks

Loss trend rates are an important input in the determination of rate change need. Loss trend factors are applied to the historical ultimate incurred losses to adjust those losses to the cost levels that are anticipated during the policy period covered under the proposed rate program.

The application of trend rates is a two-step process. The data in the experience period under consideration is adjusted to reflect observed changes in cost conditions that have taken place (i.e., "past trend"), and then the data is further adjusted to reflect future changes in cost conditions that are expected to occur between the end of the experience period and the period the new premiums will be in effect (i.e., "future trend").

Therefore, past trend rates should reflect the cost level changes that occurred during the experience period. Future trend rates should consider those changes as well as the likelihood that those patterns may change.

Heightened Uncertainty: COVID 19 and Rising Inflation

The recent claim experience is exceptional due to the COVID-19 pandemic and the recent rise in inflation. Potential future inflation scenarios add uncertainty to the selected future trend rate.

- The COVID-19 pandemic affected loss costs for 2020, 2021, and 2022-1 mainly driven by a decline in the claims frequency rate. Current projections of mileage and mobility (cell phone

[^1]data) indicate a return to pre-pandemic mobility levels in the second half of 2022. We believe 2022-2 may be the start of a "new- normal" with remote and hybrid work models commonplace, and the pandemic behind us.

Our loss trend selections are based on frequency levels without the influence of the COVID-19 pandemic. Insurers may find it appropriate to include an adjustment to the frequency level assumed in the rate application to reflect the new normal in the post pandemic era.

- We observe a significant increase in physical damage claim costs coincident with the late 2021 rise in the consumer price index (CPI) for categories that directly impact physical damage claim costs (vehicle parts, replacement vehicles, rental fees, maintenance and repair costs). ${ }^{8}$ We include additional parameters in our model to quantify this increase to the extent that it exists.

The Federal Government's steps to curb inflation through higher interest rates will likely temper the rate of annual inflation in the near future. The rapid rise in claims cost due to the inflation surge may begin to diminish if those efforts are successful, resulting in a more moderate pace of year-over-year change in the CPI as observed prior to the pandemic. Early evidence as of April 2023 indicates a tempering of the inflation rate. The challenge for government, as well as the insurance industry, is the simultaneous monitoring of inflation and identification of the necessary peak and then decline of interest rates to drive down inflation.

General inflation and/or a recession may cause consumer to "do less," leading to a reduction in vehicle usage. This possible vehicle usage reduction may lead to a reduction in the future claims frequency rate.

For this reason, when selecting the future trend rate, we suggest consideration of:

- The correlation of the historical CPI index with historical claim cost changes; and the recent pattern of changes (stabilizing, rising or falling) in the CPI.
- The actual change in claim costs data that has emerged during the recent high inflationary period.
- The anticipated future CPI during the rating program period given the Federal Government's actions to curb inflation through higher interest rates.
- The impact of economic conditions and general high inflation on vehicle usage.

We discuss this further in Section 7.

Profit Levels

As discussed in our December31, 2021 review, the COVID-19 pandemic impact on driver behaviour and resulting reduction in claims costs produced windfall profit in 2020 and 2021. The profit levels in 2022 have moderated from the highs of 2020 and 2021. Any reasonable expectation of vehicle usage in the post-pandemic era anticipates profit levels to reduce from the highs during the height of the pandemic. While the industry experienced unusually high profit levels in 2020 and 2021, well beyond FSRA's 5\% target profit provision, the industry experienced profit levels consistent with or less than the 5\% of premium level in 2018, 2019, and 2022.

[^2]Rate setting is a prospective analysis of future costs without carry-forward of past profits (or losses). The recent unprecedented profit levels during 2020 and 2021 is not a consideration in setting loss trend rate Benchmarks ${ }^{9}$ for this report.

Experience Period

Our analyses of past trend rates consider the impact of the various reforms and government actions occurring during the experience period. The 2020, 2021, and the first half of 2022 claim experience is exceptional due to the COVID-19 pandemic. There are several adjustments that may be applied to rate filings to consider the impact from the COVID-19 pandemic. The options include applying adjustments factors to unwind the COVID-19 impact and/or reducing the weight assigned to the COVID-19 periods. Each method has shortcomings:

- Exclude Affected Years: The removal of COVID-19 affected periods would eliminate any influence from the COVID-19 pandemic, however, the rate change indication would be dependent on older accident year experience that may not be representative of portfolio changes occurring during the pandemic (i.e., a change in the mix of business).
- Apply COVID-19 Unwinding Factors: Applying an adjustment to unwind the impact of COVID-19 would allow inclusion of the most recent data; however, the estimation of those factors adds to the uncertainty of the indication.
- Temper the Accident Year Weights: This lessens the use of the COVID-19 period but determining appropriate weights and COVID-19 unwinding factors adjustments adds to the uncertainty of the indication.

Remote and hybrid work models are now commonplace. Where appropriate, historical data should be adjusted to reflect the effect of this "new-normal" (emerging in the second half of 2022) on frequency levels.

Applicability of Trend Rates

In this report we present our findings related to the loss trend rates and reform factors for FSRA's consideration in its review of individual rate filings. The projection of future rate needs is subject to considerable uncertainty. For this reason, we provide rationale for the loss trend rates and reform factors that we present, as well as information to help FSRA evaluate their reasonableness.

We suggest FSRA consider the reasonableness of additional information provided by interested parties as it may be more current or may provide more insight into the Industry private passenger vehicle claim experience (particularly as respects the bodily injury coverage and inflation) that has emerged or is expected to emerge. However, in doing so we suggest FSRA also consider that the experience of one insurer may not be representative of the experience of the Industry.

We also suggest FSRA recognize that while it may be that, alone, an alternate assumption, factor, or provision may be reasonable, it may not be reasonable to combine alternate assumptions, factors, or provisions.

1.4. Report Organization

- In Section 2, we present the background of automobile insurance regulation in Ontario, including the historical legislative reforms and government actions taken.

[^3]- In Section 3, we present the most recent 10-years of industry private passenger vehicle (PPV) premium and loss experience in Ontario.
- In Section 4, we estimate the historical profit realized by the industry based on the estimates of ultimate loss and expense amounts as of December 31, 2022.
- In Section 5, we present the historical industry calendar year profit reported by GISA in the Financial Information Industry Profit and Loss (FIIP\&L) reports.
- In Section 6, we discuss our review of GISA's estimated ultimate loss amounts and claim counts for private passenger vehicles using industry data as of December 31, 2022.
- In Section 7, we discuss our loss trend methodology and various considerations in selecting loss trend rates for each coverage.
- In Section 8, we present our trend analysis for each major coverage.

We developed the estimates in this report in accordance with the applicable Actuarial Standards of Practice issued by the Canadian Institute of Actuaries.

Oliver, Wyman Limited

Paula Elliott, FCAS, FCIA
Paula.elliott@oliverwyman.com

Chris Schneider, FCAS, ACIA
chris.schneider@oliverwyman.com

2. Legislative Reforms and Government Actions

2.1. History of Reforms

In 1990, the Ontario government introduced the Ontario Motorist Protection Plan (OMPP) which, amongst other changes, introduced a system of expanded no-fault accident benefit coverages and a verbal threshold tort system restricting access to tort. Since then, many legislative changes have been introduced in Ontario. Very briefly, those changes include:

- Bill 164 (January 1994) tightened rules related to the right to sue for economic and nonpecuniary damages, and further expanded a comprehensive no-fault benefits system.
- Bill 59 (November 1996) reversed some of the tighter tort rules under Bill 164, while moving away from the comprehensive no-fault benefits of Bill 164 .
- Bill 198/Bill 5 (October 2003) introduced (i) measures to control bodily injury costs by changing the threshold definition and increasing the deductible and (ii) the Statutory Accident Benefits Schedule (SABS).
- Reg 34/10 (September 2010) amended the SABS with reduced benefits.
- Bill 15 (January 2015) introduced changes intended to improve efficiency, regulation, and licensing of third-party vendors, and reduced the prejudgment interest rate on general damages for non-pecuniary awards, as well as for disputes under SABS.
- Bill 91 (introduced in stages) included changes to the tort deductible and tort threshold effective August 2015 and revised the catastrophic impairment definition and SABS benefit level changes for policies issued or renewed on or after June 2016.

As the data we review in this loss trend analysis is based on the twenty-year period from 2003-1 to 2022-2, the impacts on claims costs of OMPP, Bill 164, and Bill 59 are not included in the data we review.

Further, while Bill 198/Bill 5 and Reg 34/10 were effective during the twenty-year data period, we find that consideration of only Bill 15 and Bill 91 reforms within our regression models to be relevant for this analysis.

2.2. Current Legislation - Background

In 2013, the government announced a Cost and Rate Reduction Strategy that included a range of measures aimed at reducing costs and improving the sustainability of the auto insurance system. The Cost and Rate Reduction Strategy has resulted in a series of regulatory amendments and other changes that we list below. Many of the government's Cost and Rate Reduction Strategy initiatives were drawn from expert independent sources including:

- The 2011 Annual Report of the Ontario Auditor General (2011 Annual Report) that recommended a range of actions to reduce costs and contain fraud,
- The 2012 Superintendent's Report on the Definition of Catastrophic Impairments in the Statutory Accident Benefits Schedule (Superintendent's Report) aimed at updating the definition of catastrophic impairment and basing the definition on the most current scientific evidence,
- The 2012 Final Report of the Anti-Fraud Task Force that recommended implementation of a comprehensive anti-fraud framework within Ontario's auto insurance system,
- The 2013 Final Report of Justice Douglas Cunningham on the Dispute Resolution System (DRS) which recommended the transformation of the DRS to streamline processes and enhance effectiveness,
- The 2014 KPMG Annual Report on Auto Insurance Transparency and Accountability that included recommendations aimed at reducing costs and improving the automobile insurance system,
- The 2014 KPMG Advisory Group Report on Towing and Storage which included measures aimed at increasing road safety, increasing consumer protection, and improving transparency in the billing of towing and storage services, and
- The 2014 Superintendent's Report on the Three-Year Review of Automobile Insurance.

Although many of the cost reduction strategies were not conducive to quantification at the time of introduction, we expect, in aggregate, these cost reduction strategies have contributed to the changes in the claim amounts and claim counts that have emerged since first introduced.

We present below specific changes introduced under Bill 15 and Bill 91 on a by coverage basis:

Bodily Injury - effective on or after January 1, 2015

- On January 1, 2015, a decrease to the 5\% pre-judgment interest rates to 1.3% : The rate is subject to quarterly reviews thereafter with updates based on the interest rates posted on the Ministry of the Attorney General's website.

Bodily Injury - effective on or after August 1, 2015

- Beginning August 1, 2015, an increase to the deductible on court awards for non-pecuniary loss from $\$ 30,000$ to $\$ 36,540$ and awards under the Family Law Act from $\$ 15,000$ to $\$ 18,270$; indexed each year starting January 1.
- Beginning August 1, 2015, an increase in the monetary threshold beyond which the tort deductible does not apply, as follows:
- for non-pecuniary loss to $\$ 121,799$ and
- under the Family Law Act to $\$ 60,899$;
indexed each year starting January 1.
- Consideration of the tort deductible, if applicable, when determining a party's entitlement to costs in a bodily injury action.

Accident Benefits- effective on or after April 1, 2016

- On April 1, 2016 the replacement ${ }^{10}$ of the DRS regime under the Financial Services Commission of Ontario (FSCO) by a system under the License Appeal Tribunal of the Safety, Licensing Appeals and Standards Tribunal (SLASTO): This change included the requirement that all SABS disputes be resolved through SLASTO and removed the access to courts (tort) that existed under the prior FSCO DRS regime.

[^4]
Accident Benefits- effective on or after January 1, 2015

- On January 1, 2015 a decrease in the SABS interest rate for overdue payments to 1.3\%; the rate is subject to quarterly adjustment thereafter with updates based on the interest rates posted on the Ministry of the Attorney General's website.

Accident Benefits- all policies issued or renewed on or after June 1, 2016

- A reduction in the standard benefit level for catastrophic impairments from $\$ 2$ million (attendant care and medical and rehabilitation) to a combined limit of $\$ 1$ million.
- The consolidation of attendant care as a separate stand-alone benefit of $\$ 36,000$ into a new standard combined benefit level for medical, rehabilitation, and attendant care benefit of $\$ 65,000$.
- A reduction in waiting period for non-earner benefits from six months to 4 weeks; and a limit to the duration of non-earner benefits to two years.
- An amendment to the definition of catastrophic impairment in the SABS.
- The requirement for goods and services not explicitly listed in the SABS to be agreed upon by the insurer as "essential."
- A reduction of the standard duration of medical, rehabilitation, and attendant care benefit to five years for all claimants except children.
- The definition of the amount payable to a professional attendant care provider to be the amount for actual services rendered subject to the monthly amounts determined by an assessment.

Changes to Optional Accident Benefits- all policies issued or renewed on or after June 1, 2016

- Introduction of a new optional combined medical, rehabilitation, and attendant care benefit of $\$ 130,000$ for non-catastrophic injuries which increases the $\$ 65,000$ limit; the optional combined medical, rehabilitation, and attendant care benefit of $\$ 1$ million for any injury remains;
- Introduction of a new optional catastrophic benefit of an additional \$1 million which, if purchased, can be combined with the current $\$ 1$ million optional medical, rehabilitation, and attendant care benefit for any injury.

Physical Damage Coverages- all policies issued or renewed on or after June 1, 2016

- A change to a standard $\$ 500$ deductible for comprehensive coverage, from $\$ 300$.

Other Changes

- Elimination of the ability to rate or include underwriting rules for minor at-fault accidents of $\$ 2,000$ or less, subject to certain conditions for policies issued on or after June 1, 2016.
- A reduction in the maximum interest rates that an insurer may charge for the monthly installment payment plans for an auto insurance policy for policies issued on or after June 1, 2016.
- A requirement that all insurers offer winter tire discounts for private passenger automobile insurance starting no later than January 1, 2016.
- Implementation of anti-fraud measures including expanded data collection; health care provider licensing; tow truck and storage changes.
- Expansion of distracted driving penalties to improve road safety.

3. Summary of Ontario Private Passenger Vehicle 2013 to 2022 Experience

3.1. Growth of Insured Vehicles

Since 2013, the number of private passenger vehicles in Ontario has increased annually, with more modest growth in 2020 and 2021, likely due to COVID-19. The following Figure 1 presents the number of written vehicles insured over each of the last ten years for bodily injury, ${ }^{11}$ collision, comprehensive and all perils coverages.

Figure 1: Written Vehicles

The number of policyholders purchasing optional collision and comprehensive coverages has increased each year, excluding a decrease in 2017 when policyholders transitioned their collision and comprehensive coverage to all perils coverage. This shift from collision to all perils is coincident with a shift toward higher deductibles for collision and comprehensive.

In Figure 2 we present the percentage of risks purchasing the optional physical damage coverages. There has been a steady increase in the percentage of vehicles with (optional) all perils coverage,

[^5]more than offsetting the reduction in collision and comprehensive purchasers. ${ }^{12}$ The growth in the percentage of risks with optional coverages has added to the total average premiums paid by consumers over time.

Figure 2: Percent Purchasing Collision and Comprehensive Optional Coverages

In Figure 3 we present the number of written vehicles at various deductible levels against time and the average deductible for each accident year. We observe a shift toward larger deductibles for collision and comprehensive.

[^6]Figure 3: Average Deductible Summary

All Perils

3.2. Change in Average Premiums

In Ontario, there are specific coverages that are mandatory (bodily injury, property damage, direct compensation, accident benefits and uninsured auto), while the remainder are optional. In Figure 4, we present the average written premiums for the mandatory, optional, and total coverages, respectively, over the ten-year period, 2013 to 2022, in half-year increments.

In Section 2 we described the historical reform changes. These reform changes can affect the level of benefits, and in turn, the average premium. Many of the reforms focussed on bodily injury and
accident benefits, which are included in the mandatory coverage category. These reforms helped temper the growth in claims cost, and therefore average premiums. The mandatory coverages average premium declined between 2013 and 2017, followed by an increase. During 2020 and 2021, there were temporary drops in the first half of each year, and otherwise a moderation to the rise that began in 2018. In contrast, the average premiums for optional coverages were relatively flat until 2016, and then began to rise. This increase may be, in part, due to higher average repair costs on the growing proportion of vehicles with advanced technology.

Figure 4: Average Written Premium - Summary

3.3. Change in Average Claims Costs

Claims costs comprise the largest component of premiums. In Figure 5 we present the average claims cost per vehicle for the Ontario mandatory, optional, and total categories. In the average claim cost estimate we include:

- indemnity amounts (i.e., cost to fully settle and close the claim) ${ }^{13}$, and
- all internal and external claims settlement costs ${ }^{14}$ (e.g., legal fees and claims adjusters).

The claims data presented for each half-year represents amounts for claims where the event that gave rise to the claim occurred in that time period, January 1 to June 30 or July 1 to December 31; and is referred to as accident-half year experience.

Figure 5: Claim Costs - Summary

In Figure 6 we present ratios of the loss and loss adjustment expense amounts to the average earned premiums to provide an indication of the relative change over time. Subject to variability, the

[^7]historical loss ratios increased between 2013 and 2016, and then began to flatten through to 2019. The 2020, 2021 and first half of 2022 loss ratios are exceptionally low due to the COVID-19 pandemic. The 2022-2 loss ratio has returned to pre-pandemic levels.

Figure 6: Loss Ratio - Summary ${ }^{15}$

Claims costs per vehicle are a combination of the claims frequency rate (i.e., the average number of claims per insured vehicle) and the average cost of each claim (referred to as the claim severity, measured as the total claims cost as a ratio to the total number of claims). We discuss the historical claims frequency and severity for each coverage more fully in Section 8.

[^8]
4. Summary of Ontario Private Passenger Vehicle Premium Components

4.1. Components of Premium

Insurance companies submit rate applications following the FSRA rate filing guidelines and processes to receive approval of the premiums they propose to charge. Insurance companies determine their rate level needs (referred to as "rate level indications") by estimating the average premium they need to charge to provide for (a) what they project their future claim costs will be, (b) what they project their future operating expense costs will be, (c) consideration of future investment income, and (d) a margin for profit. The estimate of the average premium required is compared to the estimate to the average premium currently charged. In this section, we discuss expenses, investment income and the profit provision. In Sections 6 through 8, we discuss the projection of future claim costs including the estimation of historical ultimate claims costs and the trend rates to project those claims costs to the future, respectively.

4.2. Expense Components

In Ontario, the standard automobile policy defines the coverages and endorsements used by all insurers. While standardized coverages are provided by all insurers, policyholders have many insurers from which they can obtain their automobile insurance. There are many reasons that may explain price differences between insurers for the same risk with the same coverages. One reason for the difference in price between insurers is based on the differences in the expense component included in the premiums.

There are three primary categories of expenses:

- premium tax,
- general administrative including head office costs, and
- acquisition costs.

Some expenses are referred to as variable expenses, as they are based on a percentage of the premium. The higher the premium, the higher the dollar amount included in the total premium for variable expenses like premium tax and commissions. Other expenses are referred to as fixed expenses, as they do not vary with the premium charged.

Premium Tax

In Ontario a 3\% premium tax is included in all premiums. This is a variable expense, as the actual dollar amount is based on a percentage of the premium, rather than a fixed dollar amount.

General Administrative Expenses

General administrative and head office expenses are associated with policy processing including underwriting, information technology, actuarial, and general management. The largest subcomponent would include associated rent and salaries. These expenses are usually a mix of fixed and variable expenses.

Some insurers charge fees for the payment plans they offer. In Ontario the maximum fee is 1.3% of the total premium charge for the monthly payment plan option. While some insurers report these fees as additional revenues, other insurers reduce their reported general expenses for these fees. ${ }^{16}$

Acquisition Costs

Acquisition costs vary among insurers depending upon the distribution channel. Insurers can be generally categorized under three different distribution channels: independent broker, direct writer, and company (internal) agent. Understanding the difference in costs and services between different distribution channels allows policyholders to make informed decisions on their choice of insurer.

Traditional brokers, who are independent from the insurance companies they represent, are the largest distribution channel and interact with the client to explain the coverages and options amongst the insurers that the broker represents. Between 2018 to 2022, the share premiums written by independent brokers was relatively stable at 54%. Brokers are generally compensated on a percentage of premium basis, referred to as standard commissions. In addition, a contingent commission may be paid by the insurer to the broker when target metrics such as growth or profit are met.

Direct writers offer online presence, and internal agents represent only the insurer that employs them. Unlike independent brokers whose compensation is strictly commission, comparable compensation for direct writers and agency-insurers is often a mix of commission and salary; and may include contingent commissions.

4.3. Reported Expenses

Insurers are required to report their private passenger automobile expense information to GISA, and GISA provides an aggregated summary of the expense data each year. In Table 2, we present a summary of the GISA expense data for 2018 to $2022{ }^{17}$ categorized by commissions, profit commissions, premium tax, and general expenses for all insurers. Expenses are stated as a percent of the total private passenger automobile direct written premiums. ${ }^{18}$

We observe the reported premium tax rate is not exactly 3.0% in the expense data summarized by GISA as presented in the tables below, despite the premium tax at a set rate of 3% of premiums. This is likely due to the timing of premium tax payment data associated with the written premiums.

Subject to individual insurer planned changes that may affect future expense costs, in general, recent expense costs are a reasonable forecast for the future expense costs.

[^9]Table 2: Expense by Category (All Insurers)

	Commissions	Contingent Commissions	Premium Tax	All Other Expenses	Total Expenses
2018	11.2%	1.1%	2.9%	10.7%	25.9%
2019	11.1%	1.1%	2.8%	10.0%	24.9%
2020	11.1%	1.7%	2.8%	10.3%	26.0%
2021	11.2%	2.1%	2.9%	11.2%	27.4%
2022	11.3%	1.3%	2.6%	11.1%	26.4%

The rise in the 2020 and 2021 total expense ratio over 2019 is primarily attributed to the rise in the contingent commission provision, which may be due, at least in part, to the favorable loss ratio experience observed during the COVID-19 pandemic.

We also observe a one percentage point increase in the all other expense provision between 2020 and 2021. This increase may, in part, be attributed to an increase in overhead cost outpacing the growth in average premiums.

The separate data for independent broker, direct insurers and internal agent insurers was provided by FSRA based on data reported to GISA ${ }^{19}$ by each insurer. In Table 3, we present the total expense ratio for broker-based insurers, direct insurers, and agent-insurers.

Table 3: Total Expenses by Distribution Channel

	Independent Broker	Direct Writers	Internal Agent Insurers	Total
2018	28.3%	21.1%	23.6%	25.9%
2019	26.9%	20.0%	25.0%	24.9%
2020	28.3%	21.2%	24.6%	26.0%
2021	29.7%	23.0%	25.9%	27.4%
2022	27.7%	22.1%	27.4%	26.4%

In general, based on industry-wide averages, the total expense costs for broker-based insurers are higher than for agent-based insurers; and agent-based insurer expense costs are higher than for direct writers. Excluding increases in 2020 and 2021 for independent brokers and in 2022 for internal agents, the expense ratios by distribution channel have remained relatively stable. As noted, there is a rise in the total expense ratio for 2020 and 2021 over 2019 that is due, in part, to the increase in contingent commissions which is likely due to the favorable loss ratios during the COVID-19 pandemic and a subsequent decline in 2022. In addition, part of the rise in 2021 over 2020 is due to a rise in general expenses.

The expense ratios of individual insurers may vary from these industry averages. Insurers are required to support the expense provision assumed for their rate application.

[^10]
4.4. Investment Income

Insurers earn investment income on (i) the capital they invest to support the insurance they provide and (ii) the premium received from policyholders until claims are fully settled and paid. Insurers' mix of bonds, stocks, and other investments assets, upon which investment income is earned, are subject to oversight by regulators. ${ }^{20}$

Company-wide pre-tax investment income rates are reported annually by insurers in their P\&C financial returns, and not specific to any line of business or province. We refer to this as the pre-tax return on investment rate or pre-tax ROI. ${ }^{21}$ Insurers do not report a return on investment rate specific to the capital supporting private passenger vehicles or the associated cashflow in Ontario. The company's chief investment officer typically provides a forecast of the expected investment income rate that is used by the actuary in calculating the required premium for a proposed rating program.

While historical investment income earnings are not a predictor of future investment income earnings, a review of the historical investment income (i.e., ROI) is insightful. In Table 4, we present the average pre-tax ROI for 2018 to 2022 for insurers in Ontario. To determine the ROI for each year, we calculate a weighted average using the Ontario automobile insurance premiums ${ }^{22}$ for each insurer with their respective reported ROI.

Table 4: Ontario Pre-Tax Return on Investment Rate

Calendar Year	Weighted Average Pre-tax ROI
2018	1.94%
2019	3.93%
2020	4.07%
2021	2.57%
2022	-0.25%

The premium-weighted average pre-tax ROI over the five-year period 2018 to 2022 is 2.5%. However, the actual return realized by individual insurers can vary from these industry averages as each insurer operates under their own Board-approved investment strategy. In Figure 7 we present the distribution of individual insurer pre-tax investment returns between 2018 and 2022. Consistent with our expectations, the investment returns are approximately normally distributed; with approximately $2 / 3^{23}$ of the companies within $+/-1.8$ percentage points of the mean of 2.5%.

[^11]Figure 7: Distribution of Individual Insurer Year/Year Investment Returns (2018-2022)

4.5. Profit

Insurers are entitled to a reasonable profit for the services provided and risks undertaken by providing supporting capital.

In Ontario, when setting rates, insurers have two sources of profit for private passenger vehicles:

- Explicit target provision of 5% of premium ${ }^{24}$ included in the rates, and
- Investment income earned on capital supporting the private passenger vehicle policies.

The total profit for insurers would be greater than the 5% of premium allowance by FSRA, as the later source, the investment income earned on capital, is considered outside of the rate setting process. Hence, when insurers consider their total (expected) profits as a percent of equity, ${ }^{25}$ they would include this investment income on capital and the 5% of premium profit provision explicitly allowed by FSRA. ${ }^{26}$

[^12]
4.6. Realization of the 5\% of Premium Profit Provision

While insurers include FSRA's maximum provision of 5% of premium in their rating programs to contribute to their realized profits - if the actual loss or expense amounts are higher or lower than expected, the realized profit provision as a percentage of premium will be lower or higher, respectively, than the target 5%.

We provide a high-level comparison of the target 5\% provision (in effect since October 2016) compared to that realized over the last five years (2018 to 2022) using the following assumptions:

- The historical claims payment patterns across all coverages have an estimated average claim settlement lag of approximately 2.6 years.
- The actual pre-tax ROIs between 2018 and 2022 we presented in Section 4.4 are reasonable estimates of the investment income earned on the cash flow for calculating the discount factor for each year.
- We use GISA's estimate of the ultimate loss ratios including loss adjustment expenses ${ }^{27}$ and a 0.91% of premiums Health Levy provision.
- We assume the GISA reported expense ratios for private passenger automobile for each of 2018 to 2022 apply to those years; and any finance fee revenues are netted against reported expenses.
- We assume a 4-month delay in receipt of premiums.
- We do not consider the investment income earned on supporting capital as this is separate and in addition to the FSRA 5\% of premium provision.

We present these summary statistics and metrics in Table 5.

Table 5: Comparison of Target to Realized 5\% Profit Provision

Accident Year	 LAE Ratio	Discount Factor	Expense Ratio Including Health Levy	Estimated Underwriting Profit 28
2018	79.1%	0.957	26.8%	-2.5%
2019	75.7%	0.915	25.8%	4.9%
2020	50.9%	0.913	26.9%	26.6%
2021	52.8%	0.943	28.3%	21.9%
2022	70.1%	1.006^{29}	27.3%	2.2%
* Realized Profit Provision $=1$ - Discounted Loss \& LAE Ratio - Expense Ratio				

* Realized Profit Provision = 1 - Discounted Loss \& LAE Ratio - Expense Ratio

As presented in Table 5, on average, insurers have exceeded the 5\% profit provision target set by FSRA in two of the last five years. This table is not intended to imply that the excess profit for 2020, and 2021 was intended by insurers. The 2020 and 2021 result were exceptional due to the COVID-19

[^13]pandemic. Further, this is not a representation of levels achieved prior to 2018, nor a reflection of future levels for 2023 and beyond.

5. GISA Reported Financial Data for Ontario Private Passenger Vehicles

In Section 4.6 we presented a hindsight review of the approximate realization of the 5% of premium profit target insurers may include in their rate setting models during the last five years for private passenger vehicles in Ontario. These findings are based on the events that occurred during each year of loss, referred to as an accident year, based on incurred loss amounts reported by insurers through the automobile statistical plan (ASP) to GISA and a provision for loss development as described in Section 6.2 of this report. Adjustment factors provided by GISA are applied to the loss amounts to include internal claims handling expenses. On a similar basis, accident year loss ratios are summarized and presented in the AUTO 1005 Loss Ratio Exhibit prepared by GISA. The expense data is summarized and presented in the AUTO 9502 Exhibit prepared by GISA.

5.1. GISA's Profit and Loss Exhibit- AUTO 9501

In contrast, when reporting property and casualty (P\&C) financial data to the Office of the Superintendent of Insurance (OSFI) or FSRA, the losses (including claims handling expenses) are presented on a calendar year basis, which represents the amount paid during the year plus the change in the held loss reserve amounts between the end and beginning of the year. Loss reserves are estimates of future payments required to settle and close all claims, including all claims handling expenses. Based on the submission by each insurer of their financial data, GISA compiles the reported financial data into the industry AUTO 9501 Exhibit. No adjustments are made by GISA to the reported financial data of each insurer.

Differences between Statistical Plan Data (AUTO 1005) vs. Financial Data (AUTO 9501)

The premium, loss amount, and expense data presented in the AUTO 9501 Exhibit (financial data) is different than the automobile statistical plan (ASP) data used by insurers in their rate applications and reported in the AUTO 1005 Exhibits in several ways and is, therefore, not directly comparable.

In the case of losses, these differences are:

- Financial Loss Data - AUTO 9501: Calendar year ultimate loss amount estimated by the appointed actuary of each insurer, net of reinsurance, discounted, and including a provision for adverse deviation (PFAD)
- ASP Loss Data - AUTO 1005: Accident year ultimate loss amount estimated on an aggregated basis for the industry by GISA, direct (i.e., before reinsurance), not discounted, and excluding PFAD

Provision for Adverse Development (PFAD)

The PFAD included in the estimate of the ultimate loss amount in the financial data of each insurer is an amount estimated by the appointed actuary to account for the potential deviation from the actuary's best estimate assumptions regarding: (i) the outstanding loss amount, (ii) investment rate, and (iii) recovery from reinsurers. The PFAD amount included by each insurer is not separately submitted to GISA, and therefore, the PFAD included in the AUTO9501 Exhibit is not explicitly stated or provided.

The Canadian Institute of Actuaries (CIA) Standards of Practice (SOP) provides guidance to the appointed actuary regarding considerations in selecting the margin for adverse deviation (i.e., the PFAD). The range of the provision provided by the CIA SOP is as follows:

Table 6: Canadian Institute of Actuaries Range of Margin for Adverse Deviation

Category	High	Low
Loss Development	20%	2.5%
Recovery from Reinsurance Ceded	15%	0.0%
Investment Return Rates	200 basis points	25 basis points

Discount

Similar to the PFAD provision, the discount rate used by each insurer is not stated by the insurer in the financial data summary submission to GISA, and therefore, the impact of the discount factor can not be stated or provided in the AUTO 9501 Exhibit.

Loss Adjustment Expenses

Both the AUTO 9501 and AUTO 1005 Exhibit loss amounts include provisions for loss adjustment expenses. However, in the case of the AUTO 9501 Exhibit, this is included with the loss amounts submitted by each insurer, and not separately stated. In the AUTO 1005 Exhibit, the provision for unallocated claims handling costs is included by a factor determined by GISA based on aggregated submissions by insurers.

Consistent with the presentation of claim amounts, the premiums and expenses are net of reinsurance in the financial data presented in the AUTO 9501, and on a direct basis for ASP data presented in AUTO 1005.

Summary

Due to these significant differences, the loss ratios and expense ratios in the AUTO 9501 and AUTO 1005 are not directly comparable.

The AUTO 9501 ratio of the net profit before income taxes to the net earned premium is not comparable to the target 5\% of premium profit provision insurers may include in their rate setting models. Key characteristics of the AUTO 9501 data which are different from AUTO 1005 include:

- Calendar year basis
- Net of reinsurance
- Discounted
- Includes PFAD
- Includes all investment income including from supporting capital and cash flow
- Estimates of loss prepared by each insurer's appointed actuary

5.2. GISA's AUTO 9501 - Reported Financial Results

While the GISA AUTO 9501 Exhibit financial data calendar year loss ratio is not directly comparable to accident year loss ratio results that are discussed in this report and presented by GISA in the

AUTO 1005 Exhibit, the GISA AUTO 9501 Exhibit does present a full picture of the total profits for private passenger automobile as estimated by each insurer and reported to GISA for each calendar year. This is an additional and more complete basis to consider the amount of profit achieved by insurers for private passenger vehicle insurance.

In Table 7 below, we present the history of the reported financial data in AUTO9501 over the period 2013 to 2022. The net profit before income taxes includes all expenses, revenues, and investment income as presented in the AUTO 9501. The allocation of "net general and acquisition expenses," "net investment income," and "other revenues and expenses" to private passenger automobile in Ontario can vary by insurer. In particular, the amount of investment income is dependent upon the amount of supporting capital an insurer allocates to private passenger automobile in Ontario.

The AUTO 9501 history of the net profit before income taxes between 2012 and 2022 provides an additional (and different) perspective on profit, and how this has changed over time.

Table 7: Reported Financial Profit Before Income Taxes in Auto 9501 (in \$’000)

Calendar Year	Net Earned Premium (NEP)	Net Discounted Losses with PFAD	Net General and Acquisition Expenses	Net Investment Income	Other Revenue and Expenses	Net Profit before Income Taxes	UW Income as \% of NEP	Net Profit before Income Taxes as \% of NEP
2013	10,275,127	7,639,582	2,552,609	870,035	$(35,178)$	917,793	0.8\%	8.9\%
2014	10,397,941	7,831,927	2,651,731	1,119,134	242,322	1,275,739	(0.8\%)	12.3\%
2015	9,509,361	6,646,092	2,562,606	825,876	$(59,556)$	1,066,956	3.2\%	11.2\%
2016	9,366,446	6,340,673	2,643,388	715,124	$(211,324)$	886,185	4.1\%	9.5\%
2017	8,565,017	5,905,071	2,569,570	789,816	$(160,137)$	720,055	1.1\%	8.4\%
2018	10,008,720	7,333,103	2,744,340	433,846	18,750	383,873	(0.7\%)	3.8\%
2019	9,905,358	7,523,103	2,846,526	882,919	$(99,124)$	319,901	(4.7\%)	3.2\%
2020	11,026,058	7,660,241	2,980,340	902,247	161,597	1,449,321	3.5\%	13.1\%
2021	11,132,414	6,653,267	3,137,160	575,933	$(1,290)$	1,916,630	12.1\%	17.2\%
2022								

6. Analysis Data

6.1. Data

The source for the exposures (number of vehicles), claim count and claim amount data that we analyze, which includes allocated loss adjustment expenses (ALAE), ${ }^{30}$ is the AUTO7001 Automobile Industry Exhibit (as of December 31, 2022) provided by GISA. We refer to this as "the AIX report." This data includes the experience of all private passenger vehicles in Ontario.

The claim count and claim amount data presented in the AIX report is grouped according to the date of the accident half-year during which the event occurred.

The claim amount data that is available through the AIX report includes:

- Paid Claim Amounts - claim cost payments made by an insurance company; includes payments that were made on claims that are now closed, as well as payments made on claims that are still open (referred to as partial payments).
- Case Reserves - the insurance company's estimate of the amount of future claim cost payments to be made on individual claims; a case reserve is assigned to each individual open claim.

The total of the paid claim amounts made on each closed or open claim and the case reserve carried on each open claim is referred to as reported incurred claim amounts.

The case reserves (and hence the reported incurred claim amounts) reflect the views and opinions of the respective insurance company claim adjusters that handle the individual claims, and are based on the information available to the claim adjusters as of a particular point in time. Over time, the case reserves are revised to more accurately reflect the payments that are made or that are expected to be made based on additional information that becomes available to the claim adjusters.

It is important to note the following about case reserves:

- The determination of case reserves varies between insurance companies. For example, it is typical for insurance companies to instruct their claim adjusters to post a pre-set amount (e.g., $\$ 10,000$ for bodily injury claims) as the case reserve when a claim is first reported, and before any investigation is performed. This is referred to as the "initial claim reserve." In a sense, the initial claim reserve serves as a placeholder until investigation is conducted and a more accurate estimate can be established by the claim adjusters. For those companies that follow this approach, the amount of the initial case reserve and the length of time the initial claim reserve remains posted varies by company and, for a particular company, could change over time.
- The case reserves do not reflect the "actuarial reserve" (also referred to as the bulk reserve or the IBNR reserve) that insurance companies record in their financial statements. This actuarial reserve, which is estimated by the insurance company actuaries, is an aggregate amount that is intended to provide for (i) any overall inadequacies or redundancies in the case reserves that are established on individual claims, and (ii) claims (accidents) that occurred but have not yet been reported to the insurance company as of the date of the financial statement. The approach that insurance companies (their actuaries) use to determine the "actuarial reserve," while subject to the common standards of the Canadian Institute of Actuaries, varies from company to company.

[^14]
6.2. Estimating Ultimate Claim Counts and Ultimate Claim Amounts by Accident Half-Year - General Approach

We present GISA's estimated (ultimate) number of claims and the estimated cost ${ }^{31}$ of all claims that arise from events that occur in the first and second half of the year (referred to as "accident halfyears ${ }^{\prime 32}$), separately, through to December 31, 2022. These estimates are used to measure and select the loss trend rates presented in this report.

Due to the COVID-19 pandemic, there is additional uncertainty associated with the estimates for the 2020, 2021, and 2022 accident year periods.

Loss and Claim Count Development

At the request of FSRA, we reviewed the analysis prepared by EY on behalf of GISA ${ }^{33}$ to estimate the ultimate loss amount (including ALAE) and claim counts for each accident half-year. EY presents the results of several methods; and generally selects the incurred development method except for less mature periods of longer-tail coverages where EY selects the BF method.

Although we have different preferences in methodology, and would make different selections for the same methodologies, we find GISA's ultimate loss amount and claim count selections are reasonable for our purpose of determining loss trend rates.

The BF method requires an a priori assumption as an input to the calculation. GISA's a priori is based on the projections from our prior frequency, severity, and loss cost trend models and therefore implicitly includes a trend assumption as in input. This logic may be considered circular as a larger a priori trend assumption will result in larger ultimate loss amounts and a larger indicated trend rate per the regression model.

The BF method assumes that the unreported losses for an accident year are independent of losses reported to date and that 100% of the unreported losses will emerge consistent with the a priori assumption (based on our trended frequency and severity estimates). In generally, we find the use of a BF method is reasonable; however, we find the approach is slower to react to emerging trends. In contrast, the loss development method places full weight on the loss emergence to date and reacts more quickly to any changes in loss emergence.

Despite our reservations, based upon our review we find the estimates prepared by EY to be generally reasonable for our purposes of selecting loss trend rates. That is, we find any differences in estimates from what we would select would have an immaterial difference on the loss trend rates we select. ${ }^{34}$ We use these estimates, as prepared by EY on behalf of GISA, in our loss trend analysis.

[^15]
6.3. Selection of Ultimate Loss Costs, Frequencies, and Severities

As a result of the claim experience that has emerged, GISA's estimate of the ultimate loss costs, frequencies, ${ }^{35}$ and severities by accident year have changed from those used for the prior evaluation. We present changes by coverage in the tables below. We note the selection of ultimate claim counts and ultimate loss amounts influences the selected loss trend rates. ${ }^{36}$

Table 8: Changes in Bodily Injury Estimated Loss Costs, Frequency and Severity

	As of June 30, 2022			As of December 31, 2022		
AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 250.83$	$\$ 149,289$	1.68	$\$ 252.40$	$\$ 150,092$	1.68
2019	$\$ 242.27$	$\$ 147,511$	1.64	$\$ 244.62$	$\$ 150,053$	1.63
2020	$\$ 174.68$	$\$ 161,313$	1.08	$\$ 174.54$	$\$ 167,464$	1.04
2021	$\$ 168.78$	$\$ 153,528$	1.10	$\$ 167.78$	$\$ 158,840$	1.06
2022^{*}	$\$ 138.28$	$\$ 134,831$	1.03	$\$ 192.60$	$\$ 161,871$	1.19
* The 2022 data presented through to June 30, 2022 and is not directly comparable to the full 2022 year.						

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have increased by 0.3\%.

Table 9: Changes in Property Damage Estimated Loss Costs, Frequency and Severity
As of June 30, 2022 As of December 31, 2022

AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 10.15$	$\$ 8,334$	1.22	$\$ 10.17$	$\$ 8,343$	1.22
2019	$\$ 11.24$	$\$ 9,406$	1.19	$\$ 11.20$	$\$ 9,414$	1.19
2020	$\$ 8.06$	$\$ 9,522$	0.85	$\$ 8.33$	$\$ 9,891$	0.84
2021	$\$ 8.31$	$\$ 10,243$	0.81	$\$ 7.89$	$\$ 10,187$	0.78
2022^{*}	$\$ 12.04$	$\$ 9,318$	1.29	$\$ 11.82$	$\$ 10,142$	1.17

* The 2022 data presented through to June 30, 2022 and is not directly comparable to the full 2022 year.

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have decreased by 0.4% (subject to rounding differences).

[^16]Table 10: Changes in DCPD Estimated Loss Costs, Frequency and Severity
As of June 30, 2022
As of December 31, 2022

AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 234.33$	$\$ 6,894$	33.99	$\$ 234.37$	$\$ 6,895$	33.99
2019	$\$ 251.49$	$\$ 7,292$	34.49	$\$ 251.48$	$\$ 7,292$	34.49
2020	$\$ 152.63$	$\$ 7,479$	20.41	$\$ 152.74$	$\$ 7,482$	20.41
2021	$\$ 160.29$	$\$ 7,762$	20.65	$\$ 160.26$	$\$ 7,731$	20.73
2022^{*}	$\$ 199.31$	$\$ 8,312$	23.98	$\$ 224.92$	$\$ 8,801$	25.55

* The 2022 data presented through to June 30, 2022 and is not directly comparable to the full 2022 year.

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have changed immaterially.

Table 11: Changes in AB Total Medical and Rehab Estimated Loss Costs, Frequency and Severity
As of June 30, 2022
As of December 31, 2022

AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 249.06$	$\$ 30,923$	8.05	$\$ 246.65$	$\$ 30,635$	8.05
2019	$\$ 252.95$	$\$ 31,584$	8.01	$\$ 247.79$	$\$ 30,896$	8.02
2020	$\$ 184.95$	$\$ 38,013$	4.87	$\$ 182.33$	$\$ 37,543$	4.86
2021	$\$ 185.85$	$\$ 36,099$	5.15	$\$ 189.04$	$\$ 36,584$	5.17
2022^{*}	$\$ 180.31$	$\$ 33,866$	5.32	$\$ 225.38$	$\$ 36,712$	6.14

* The 2022 data presented through to June 30, 2022 and is not directly comparable to the full 2022 year.

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have decreased by 0.8%.

Table 12: Changes in AB Total Disability Income Estimated Loss Costs, Frequency and Severity
As of June 30, 2022 As of December 31, 2022

	As of June 30, 2022			As of December 31, 2022		
AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 73.47$	$\$ 34,840$	2.11	$\$ 72.79$	$\$ 34,749$	2.09
2019	$\$ 73.49$	$\$ 35,578$	2.07	$\$ 72.70$	$\$ 35,560$	2.04
2020	$\$ 49.31$	$\$ 36,778$	1.34	$\$ 47.60$	$\$ 36,086$	1.32
2021	$\$ 50.83$	$\$ 37,463$	1.36	$\$ 49.83$	$\$ 37,404$	1.33
2022^{*}	$\$ 49.55$	$\$ 35,285$	1.40	$\$ 60.58$	$\$ 39,991$	1.51

* The 2022 data presented through to June 30, 2022 and is not directly comparable to the full 2022 year.

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have decreased by 1.7\%.

Table 13: Changes in AB Funeral \& Death Benefits Estimated Loss Costs, Frequency and Severity
As of June 30, 2022
As of December 31, 2022

AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 1.95$	$\$ 17,799$	0.11	$\$ 1.95$	$\$ 17,859$	0.11
2019	$\$ 1.82$	$\$ 18,016$	0.10	$\$ 1.81$	$\$ 17,811$	0.10
2020	$\$ 1.52$	$\$ 17,222$	0.09	$\$ 1.53$	$\$ 17,236$	0.09
2021	$\$ 1.47$	$\$ 17,479$	0.08	$\$ 1.47$	$\$ 17,053$	0.09
2022^{*}	$\$ 1.26$	$\$ 17,998$	0.07	$\$ 1.48$	$\$ 17,189$	0.09

* The 2022 data presented through to June 30, 2022 and is not directly comparable to the full 2022 year.

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have decreased by 0.2% (subject to rounding differences).

Table 14: Changes in Collision Estimated Loss Costs, Frequency and Severity
As of June 30, 2022
As of December 31, 2022

AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 256.55$	$\$ 7,873$	32.58	$\$ 256.51$	$\$ 7,873$	32.58
2019	$\$ 276.47$	$\$ 8,332$	33.18	$\$ 276.54$	$\$ 8,340$	33.16
2020	$\$ 179.86$	$\$ 8,664$	20.76	$\$ 179.98$	$\$ 8,667$	20.76
2021	$\$ 182.60$	$\$ 8,984$	20.33	$\$ 181.70$	$\$ 8,942$	20.32
2022^{*}	$\$ 247.13$	$\$ 9,517$	25.97	$\$ 270.80$	$\$ 10,011$	27.05

* The 2022 data presented through to June 30, 2022 and is not directly comparable to the full 2022 year.

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have decreased by 0.1\%.

Table 15: Changes in Estimated Comprehensive Loss Costs, Frequency and Severity
As of June 30, 2022 As of December 31, 2022

AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 89.73$	$\$ 3,344$	26.84	$\$ 89.71$	$\$ 3,343$	26.84
2019	$\$ 90.39$	$\$ 3,495$	25.86	$\$ 90.36$	$\$ 3,494$	25.87
2020	$\$ 91.12$	$\$ 4,115$	22.14	$\$ 91.14$	$\$ 4,119$	22.13
2021	$\$ 116.91$	$\$ 4,954$	23.60	$\$ 116.45$	$\$ 4,925$	23.64
2022^{*}	$\$ 164.07$	$\$ 5,568$	29.46	$\$ 180.97$	$\$ 6,418$	28.20

* The 2022 data presented through to June 30, 2022 and is not directly comparable to the full 2022 year.

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have decreased by 0.1\%.

Table 16: Changes in All Perils Estimated Loss Costs, Frequency and Severity
As of June 30, 2022
As of December 31, 2022

AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 402.79$	$\$ 7,139$	56.42	$\$ 402.75$	$\$ 7,138$	56.42
2019	$\$ 411.07$	$\$ 7,356$	55.88	$\$ 411.13$	$\$ 7,356$	55.89
2020	$\$ 307.62$	$\$ 7,416$	41.48	$\$ 307.45$	$\$ 7,405$	41.52
2021	$\$ 356.12$	$\$ 8,320$	42.80	$\$ 355.13$	$\$ 8,224$	43.18
2022^{*}	$\$ 474.86$	$\$ 8,917$	53.25	$\$ 539.76$	$\$ 9,949$	54.25

* The 2022 data presented through to June 30, 2022 and is not directly comparable to the full 2022 year.

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have decreased by 0.1\%.

Table 17: Changes in Specified Perils Estimated Loss Costs, Frequency and Severity
As of June 30, 2022
As of December 31, 2022

AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 17.00$	$\$ 4,101$	4.14	$\$ 17.01$	$\$ 4,101$	4.15
2019	$\$ 48.76$	$\$ 7,730$	6.31	$\$ 48.82$	$\$ 7,730$	6.31
2020	$\$ 48.85$	$\$ 8,309$	5.88	$\$ 48.62$	$\$ 8,262$	5.89
2021	$\$ 154.81$	$\$ 13,279$	11.66	$\$ 152.91$	$\$ 12,990$	11.77
2022^{*}	$\$ 121.50$	$\$ 10,025$	12.12	$\$ 147.58$	$\$ 12,137$	12.16

* The 2022 data presented through to June 30, 2022 and is not directly comparable to the full 2022 year.

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have decreased by 0.8\%.

Table 18: Changes in Uninsured Auto Estimated Loss Costs, Frequency and Severity
As of June 30, 2022 As of December 31, 2022

AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 9.98$	$\$ 51,787$	0.19	$\$ 10.43$	$\$ 54,285$	0.19
2019	$\$ 8.96$	$\$ 47,994$	0.19	$\$ 9.25$	$\$ 49,491$	0.19
2020	$\$ 8.82$	$\$ 58,909$	0.15	$\$ 8.63$	$\$ 57,515$	0.15
2021	$\$ 8.91$	$\$ 51,104$	0.17	$\$ 8.86$	$\$ 50,471$	0.18
2022^{*}	$\$ 9.95$	$\$ 47,628$	0.21	$\$ 10.87$	$\$ 46,154$	0.24

* The 2022 data presented through to June 30, 2022 and is not directly comparable to the full 2022 year.

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have increased by 1.3% (subject to rounding differences).

Table 19: Changes in Underinsured Motorist Estimated Loss Costs, Frequency and Severity

	As of June 30, 2022			As of December 31, 2022		
AY	Loss Cost	Severity	Frequency	Loss Cost	Severity	Frequency
2018	$\$ 7.85$	$\$ 220,314$	0.04	$\$ 8.22$	$\$ 228,861$	0.04
2019	$\$ 8.04$	$\$ 209,504$	0.04	$\$ 7.98$	$\$ 206,012$	0.04
2020	$\$ 7.24$	$\$ 246,489$	0.03	$\$ 7.56$	$\$ 270,152$	0.03
2021	$\$ 7.55$	$\$ 275,385$	0.03	$\$ 7.82$	$\$ 254,162$	0.03
$2022 *$	$\$ 10.12$	$\$ 222,181$	0.05	$\$ 8.60$	$\$ 201,665$	0.04
*The 2022 data presented through to June 30,2022 and is not directly comparable to the full 2022 year.						

In aggregate, for the four-year period 2018 to 2021, the estimates of ultimate loss costs have increased by 2.9\%.

7. Loss Trend Methodology

7.1. Introduction

Loss trend rates are annual rates of change used to develop factors which are applied in the determination of rate level indications. They are applied to the ultimate incurred losses during the experience period ${ }^{37}$ to adjust those losses to the cost levels that are anticipated during the policy period covered under the proposed rate program.

The application of trend rates is, essentially, a two-step process. The data in the experience period under consideration is adjusted to reflect observed changes in cost conditions that have taken place (i.e., "past trend"), and then the data is further adjusted to reflect future changes in cost conditions that are expected to occur between the end of the experience period and the period the new premiums will be in effect (i.e., "future trend").

Therefore, past trend rates should reflect the cost level changes that occurred during the experience period. Future trend rates should consider those changes as well as the likelihood that those patterns may change.

7.2. Past Trend - Model Considerations

We employ a data-based approach to estimate an appropriate past loss trend rate for each coverage; i.e., we consider the observed trend patterns based on estimates of the Industry Ontario ultimate claim frequency, claim severity and loss cost ${ }^{38}$ by accident half-year that GISA selects (as we discuss in Section 6) and the results of regression analyses we perform. The regression models we consider include various parameters that could have an impact on losses over time, such as time (i.e., trend) parameters, seasonality, and scalar/level ${ }^{39}$ change parameter to reflect changes in the cost level.

The identification of the underlying trend patterns over the historical period is challenging because factors such as statistical fluctuation in the data points, changes in the underlying exposure, the impact of the COVID-19 pandemic, changes in the economic environment, abnormal weather conditions, etc., can make the underlying trend patterns difficult to discern. For this reason, we employ a holistic approach to modeling and consider several models with varying parameters and accident periods to identify the underlying trends that occurred. The various trend patterns that we review and associated statistical results are summarized in Appendix E^{40} for each of frequency, severity, and loss cost.

The initial step of our process is to visually inspect the historical frequency (number of claims per insured vehicles), severity (average claim amount) and loss costs data for each coverage. We note unusual data points, obvious changes in pattern directions, and sustained shifts; and if these changes are coincident with historical reforms. These observations guide us in our final model design

[^17]for each coverage. ${ }^{41}$ In Section 8 of this report we present support for the past loss trend rate we select based on our review of the data and models presented for each coverage.

We discuss additional considerations in developing a past loss trend rate in more detail below.

Time Period

In this review, we present and consider the claim experience by accident half-year, spanning the twenty-year period from 2003-1 to 2022-2. For each coverage, we consider models started and ending at various time periods and excluding certain data points to improve our understanding of the sensitivity of the calculated loss trend rates. We consider models over time periods that are longer than the experience period as a means of increasing the stability/reliability of the data being analyzed and to assess changes in trend patterns that may have occurred in the past.

Selected Trend Models

As presented in Appendix E, we review several different models for each coverage based on different time periods, inclusion or exclusion of reform (i.e., level change) parameters, inclusion or exclusion of a trend rate change parameter, and data exclusions.

We select a model based on our holistic assessment of the statistical tests, historical data (changes in patterns and spikes) and model parsimony.

In Section 8, we discuss our selected model and resulting statistical fit, but due to the many models that we consider, we do not discuss why each of the other models (as presented in Appendix E) were not selected as the best fit. We present our selected models and include a comparison between the observed and fitted loss cost for each coverage in Appendix F.

Seasonality

Some coverages exhibit "seasonality" - where the number of claims or claim amounts incurred during the first half of a year are generally higher/lower than claim costs incurred during the second half of a year. In the coverage-by-coverage discussion that follows, we state whether seasonality is statistically significant based on the measured p-values and, if appropriate, include seasonality in our regression model used as the basis for our trend selection.

Weather Conditions

On occasion, an extreme weather condition, such as the level of rain, snowfall or wind can contribute to a change in the frequency level. As a result, the time period with that associated extreme weather event could result in an exception to an underlying trend pattern. We considered the following weather events noted by GISA in our review:

- GISA notes the increase in the claim severity in August 2005 due to a flash flood in Southern Ontario.
- GISA notes the increase in the number of claims and claim amounts in June 2008 due to a hailstorm in Ontario.

Scalar / Level Change Parameters

The purpose of a scalar or level change parameter is to isolate and remove the impact of a one-time shift in claim cost (e.g., due to a reform or other event) so that the underlying claim cost trend can be identified. The additional parameter effectively quantifies and adjusts the y-intercept to account

[^18]for a one-time change in cost level. We determine the statistical significance of a level change based on results of p-value tests.

Change in Trend Parameters

Some reforms result in a sustained level change with the trend rate before and after the reform unchanged. Other reforms could, in addition or instead, cause a change in the trend rate after the reform. As part of our regression model design, we consider the possibility that a reform could cause the trend rate (slope) to change in magnitude or direction. We determine the statistical significance of a trend rate change based on results of p-value tests.

Reform Effective Date

In Section 2 we discussed the recent legislative reforms in Ontario and noted the different implementation dates of the reform components. The implementation effective date of a reform will affect the way a change in the number of claims and/or the claim amount due to the reform will emerge into the AIX data by accident half-year. Reforms may apply:
(i) to all claims that occur on or after a specified date,
(ii) to all claims reported after a specified date, or
(iii) to policies effective on or after a specified date.

Reforms that are effective for all claims occurring on or after a specified date versus reforms that are effective for all policies effective on or after a specified date will emerge into the AIX data differently, with the latter phased-in over several accident half-years.

In general, we find:

- Reforms that restrict or reduce a benefit on or after a specified accident date (typically) are more likely to produce a sustained shift down coincident with the accident half year that the reform was effective.
- Reforms that expand a benefit on or after a specified accident date, may or may not produce a sustained shift up coincident with the accident half year that the reform was effective. In some cases, the full effect of the expanded benefit may take time to be fully realized. This may, in part, be due to a "learning curve" for claimants and their representatives; as well as adjusters assessing the value of claim in a manner consistent with its assessment immediately prior to the reform.
- When a reform is effective for policies that are issued after a specified date, there is a phased-in outcome whereby the subsequent accident half year data will be a mixture of claims under two regimes. In this case our identification of the impact of the reform is phased in over several accident half years and the isolation of the reform impact takes several years of post-reform data to fully evaluate.

Bill 15 and Bill 91

In situations where the reforms are effective as policies are issued and the change in claims is phased into the data over several accident half-years, we use a parallelogram method to determine the proportion of an accident half year subject to the reform impact. The vast majority of the
accident benefit reforms under Bill 15 and Bill 91 are effective for policies issued or renewed on or after June 1, 2016. Therefore, we estimate the impact of these reforms phase in as follows: ${ }^{42}$

- In accident half year 2016-1, approximately 1\% of claim amounts are subject to the new reform;
- In accident half year 2016-2, approximately 33\% of claim amounts are subject to the new reform;
- In accident half year 2017-1, approximately 83% of claim amounts are subject to the new reform;
- In accident half year 2017-2, 100\% of claim amounts are subject to the new reform.

In Section 8.4 we present summaries of our accident benefit reform factors (and loss trends) applicable to Bills 15 and 91 introduced in 2015 and 2016 by accident half year to adjust historical data prior to the reforms to the same cost level as the current reforms.

Statistical Tests

We test the various trends that we model for statistical significance using various tests, and present the adjusted R -squared values, and p-values in Appendix E .

- We respect to the adjusted R-squared, we generally refer to values of 80% or greater to as "high," values between 40% and 80% as "moderate," and values below 40% as "low."
- We consider covariates with p-values under 5% to be "significant."
- The confidence interval presented corresponds to a 95\% probability level range.

Other Considerations

In selecting past loss trend rates, we also consider:

- variance in results (i.e., changes in trends) based on different historical time periods;
- relationship of frequency and severity trend patterns; and
- uncertainty in the estimated values.

Sub-coverage Groupings

We perform our loss trend regression analysis for each coverage by combining all sub-coverages for that coverage.

In prior reviews, we selected separate loss cost trend rates for accident benefits - medical/ rehabilitation/attendant care, disability income, and funeral/death benefits as the impact of the 2015 and 2016 reforms varied by sub-coverage. As we expect the experience period underlying insurer's rate applications will rely primarily on post-reform data going forward, the trend models we present in Section 8 of this report considers the combined total accident benefits experience. We continue to include models fit to accident-benefits sub-coverages in Appendix E for interested stakeholders.

[^19]
COVID-19

As described in our prior reports, we find the traffic volume and claims cost ${ }^{43}$ between 2020 and 2022-1 were lower than pre-pandemic levels due to various "stay-at-home" orders and other directives in place during the COVID-19 pandemic.

The trend rates that we present in this report are intended to measure the rate of change in loss cost experience without influence of the COVID-19 pandemic.

We account for and isolate the observed change due to COVID-19 in the 2020, 2021, and the first half of 2022 frequency level ${ }^{44}$ by the addition of a pandemic traffic decline parameter in our frequency model that we refer to as a mobility parameter. A p-value less than 5% for the mobility parameter indicates that there is a statistically significant observable effect on frequency (or severity) due to the COVID-19 pandemic in 2020, 2021, and/or the first half of 2022 and therefore, the mobility parameter should be included in our model design.

To control for the impact of the pandemic, we consider the use of the mobility composite metric published by the IHME. ${ }^{45}$ We assume this mobility metric, which represents the decline from typical mobility levels, is correlated with the decline in traffic and claims frequency caused by the COVID-19 pandemic. For all accident periods prior to 2020-1, we use an average mobility composite score of zero to represent "typical mobility." For each of the accident periods 2020-1, 2020-2, 2021-1, 20212, 2022-1 we select an average mobility change value based on IHME's mobility composite metric in Ontario. In Table 20, we present the IHME's Ontario average mobility as measured by the mobility composite metric across accident semester.

Table 20: Average Mobility Composite
Average Mobility

Scenario	$\mathbf{2 0 2 0 - 1}$	$\mathbf{2 0 2 0 - 2}$	$\mathbf{2 0 2 1 - 1}$	$\mathbf{2 0 2 1 - 2}$	$\mathbf{2 0 2 2 - 1}$	$\mathbf{2 0 2 2 - 2}$
Projection	-36.0	-33.2	-41.1	-20.4	-20.4	-4.0

We estimate the relationship between the change in claims experience due to the COVID-19 pandemic and mobility through inclusion of the "mobility parameter" in our loss trend models. By applying the mobility parameter's coefficient to the mobility, we are able to estimate the effect of the COVID-19 pandemic on claims experience.

Consideration can be given to removing the impact of the pandemic on historical loss experience to the extent that the 2020-1 through 2022-1 data is included in the experience period of an insurer's rate application. ${ }^{46}$

In May 2023, World Health Organization determined that COVID-19 no longer constitutes a public health emergency. We find the start of the "new-normal" (or post pandemic period) likely began prior to this announcement. In general, there has been a gradual increase in traffic levels since the early days of the pandemic as more individuals returned to the workplace. At this point in time, it appears that the current hybrid work environment and reduced commuting traffic is likely to continue. Although it is difficult to identify an exact point in time when the "new normal" post pandemic began, we consider the 2022-2 period to be a potential starting point. While we continue to observe a decline in 2022-2 frequency compared to the pre-pandemic period, the degree of the

[^20]decline has moderated compared to the pandemic period. Additionally, as implied by IHME's average mobility for the period, and shown in Figure 8, the total amount of time Canadians spent at home stabilized and returned to near pre-pandemic levels during the second half of 2022. As 2022-2 represents a potential new post-pandemic frequency level for the industry, insurers could consider whether the reduction between 2019-2 and 2022-2 is likely to persist into the future.

We further discuss how insurers could consider the impact of COVID-19 during the prospective period in Section 7.3.

Figure 8: Google Mobility Data
Residential areas: How did the time spent at home change relative to before the pandemic?

This data shows how the number of visitors to residential areas has changed relative to the period before the pandemic.

Source: Google COVID-19 Community Mobility Trends - Last updated 21 October 2022
OurWorldlnData.org/coronavirus - CC BY
Note: It's not recommended to compare levels across countries; local differences in categories could be misleading.

Recent Inflation

Supply chain issues and pent-up consumer demand has resulted in a recent increase in inflation which may lead to increased claim costs during the prospective period. In the following figures we present the consumer price index (left panel) and year-over year percentage change (right panel) ${ }^{47}$ over the last 20 years in Ontario, separately, for:

- All-Items
- Transportation
- Purchase of passenger vehicles
- Rental of passenger vehicles

[^21]- Passenger vehicle parts, maintenance, and repair
- Health Care

Figure 9: Consumer Price Index - All Items \& Transportation

Figure 10^{48} : Consumer Price Index - Purchase \& Rental of Passenger Vehicle

[^22]Figure 11: Consumer Price Index - Passenger Vehicle Parts, Maintenance, and Repair \& Healthcare

A review of the historical data points (as presented in the figures above) shows that subject to variability:

- Inflationary pressures on physical damage coverages (such as vehicle purchase, rentals and passenger vehicle parts, maintenance and repair costs) has resulted in the highest inflation levels in the last 20 years. The inflationary rise, which began in the second half of 2021, appears to be showing signs of moderation in early 2023 for vehicle purchase and rentals. However, the passenger vehicle parts, maintenance and repair CPI has continued to increase at a faster rate than historical levels.
- Inflationary pressures on Health Care costs appear to have lagged behind the physical damage coverages, with a more modest rise beginning later in 2022.

As shown in Figure 12, the 2021-2 through 2022-2 DCPD, collision, comprehensive, and all perils severity has risen steeply, deviating from historical patterns. These higher claims severities are likely due, at least in part, to the recent inflationary environment for vehicle parts, maintenance and repair costs which produces larger claim costs for physical damage coverages ${ }^{49}$ since more costly repairs will increase the total amount needed to settle claims. While vehicle parts and repair costs are a large proportion of the cost to settle claims, higher new or used vehicle costs, labour rates, and vehicle rental rates likely also influenced the cost to settle claims during this time.

[^23]We do not observe a significant change in the historical severity trend for bodily injury or accident benefits coincident with the 2021-2 inflation increase. There is a steep rise in bodily injury and accident benefits severity at 2022-2 that may ${ }^{50}$ be related to the recent increase in healthcare costs in the province.

As described above, we employ a holistic data-based approach to estimate the underlying past trend rate for each coverage. More specifically, we consider adding an additional scalar parameter to the model to isolate and quantify the change in severity level to the extent that the change is apparent and statistically significant for a specific coverage. Although inflation is commonly considered a compounding calendar year effect, we find a scalar parameter to be the most effective tool for measuring the historical impact of inflation on claims costs in these circumstances for the following reasons:

- The loss cost trend rate is not equal to the CPI, but instead correlated with it. Other social and economic factors influence the difference between the measured loss cost trend rate and the CPI.
- We recognize an alternative approach would be to include an additional trend parameter in the model, rather than the proposed scalar. Although this may better align with the compounding effect of inflation, we find assuming the high inflationary environment (and implied higher severity trend) will persist into the future period may not be reasonable. ${ }^{51}$
- The Government of Canada has been raising interest rates to curb the inflation surge and reduce inflation to pre-pandemic levels. The timing of the interest rate peak and subsequent decline will affect the timing of a return to lower inflation levels. Managing the relationship of the interest rate changes over time to curb inflation is a challenge for the government; and as a result, a challenge for the insurance industry.
- Assuming the higher interest rates cause the inflation surge to subside, then higher loss trend rates should also subside. As shown in Figure 9 through Figure 11 above, there is early evidence that inflation is beginning to moderate in 2023 for some primary physical damage claims cost components.

As shown in Appendix G, we find this additional parameter is not significant despite the rise in physical damage severity coincident with the recent inflation increase. We attribute this lack of significance to the flattening of the physical damage severity trend directly before the rise in inflation. Although the inclusion of both a change in trend and scalar parameter is generally significant for physical damage severity, we believe a parsimonious model is more appropriate to avoid overfitting in this case.

We note the trend rates implied by our selected regression models implicitly include any impact of the rise in inflation up to December 31, 2022.

We further discuss the expected inflationary impact on future loss trend in Section 7.3 below.

[^24]Figure 12: Historical Severity by Coverage

7.3. Future Trend Considerations

The selection of an appropriate future loss trend rate is more difficult as it involves an additional layer of complexity. Future loss trend rates should consider both the cost level changes that occurred in the past (i.e., past trend) and the likelihood that those patterns may change. In the absence of a significant change in experience over the recent accident periods, we find it is most reasonable to assume the past loss trend will perpetuate into the future resulting in equivalent past and future trend rates. If appropriate, we adjust our selected past trend rates considering the changes that have occurred over the recent past if there is evidence of new patterns emerging.

The recent rise in inflation that began in late 2021 affects the past loss cost levels; and any stabilization, moderation or increase in future inflation will affect future loss cost levels. For the future trend period, which is the mid-point of the latest accident half-year (October 1, 2022 in this review) to the average accident date of the proposed rate program, consideration should be given to
the potential changes to the inflation rate over that same future projection period. We discuss the issue of inflation in the context of the past and future trend rates below.

Post COVID-19 "New Normal"

Insurers should consider the degree to which the post-pandemic "new-normal" is expected to impact claims cost during the proposed rate program. An adjustment applicable to all historical accident years will likely be necessary to reflect the reduction in claims frequency expected as a result of the general shift toward a hybrid workplace. ${ }^{52}$ As noted above, we view 2022-2 as the possible beginning of the "new-normal" post pandemic period, and may serve as an early indicator to the expected reduction in frequency during the proposed rating program. To attempt to quantify the "new normal" level, we assume a mobility value of 0 and include a scalar (new normal) parameter at 2022-2 to estimate the post-pandemic reduction in frequency. When estimating this adjustment, consideration should be given to the most recent experience available at the time of filing. For example, monthly claims frequency data may give important insight into consumer driving habits.

To aid FSRA in reviewing an insurer's assumptions regarding the "new normal" frequency level, we quantify the reduction in the trended industry claims frequency between 2019-2 and 2022-2 for all coverages in Appendix H of this report. Under the presumption that the 2022-2 frequency level is a reasonable starting point for the new normal, these estimates may represent a preliminary expectation for the prospective period.

Future Inflation

Insurers project the experience period data included in their rate applications to the average cost level expected during the prospective rate program period. As described in Section 7.2, the high inflationary environment beginning in late 2021 has resulted in a large increase in accident year claim costs. The trend models we present implicitly consider the impact of inflation up to December 31,2022 via an additional scalar parameter that is included the model if significant. In selecting the future trend rate, an insurer will consider if inflation is stabilizing, falling or rising, and modify/adjust the past trend rates for the prospective period.

In Figure 13^{53} we present the International Monetary Fund's (IMF) forecast of future inflation, as measured by all items CPI in Canada. As shown in Figure 13, the IMF expects inflation to decrease in 2023 but remain above the Government's target range, followed by a further decrease in 2024. The forecasted decline for 2023 is evident in the reported all items CPI data as of April 2023.

In addition to the impact of inflation on claims costs (and trend rates), inflation is impacting the interest rate environment. Additional investment income resulting from higher bond yields due to rising interest rates is an additional consideration for rate indication models.

[^25]Figure 13: IMF Forecasted Inflation

8. Selected Loss Trend Rates

8.1. Bodily Injury

In Figure 14, we present the estimated loss cost (average claim cost per vehicle), average severity (average claim cost per claim), and frequency rate (average claim incidence rate) over the period 2003-1 through 2022-2. We include a comparison to the estimated values used in our prior evaluation and observe many of the severity estimates since 2017 have increased.

Figure 14: Observed Bodily Injury Loss Cost Experience

A review of the historical data points (as presented in Figure 14) shows that subject to variability:

- Loss cost had exhibited a relatively flat trend following the September 2010 reform, Reg 34/10. This changed to a decreasing pattern with the introduction of Bills 15 and 91 in 2015/2016. We
observe a large decrease during 2020, 2021, and the first half of 2022 coincident with the COVID-19 pandemic.
- Severity has exhibited a generally upward trend since Reg 34/10. We observe an upward spike during the first half of 2020 and the second half of 2022, and a decrease in 2021 and the first half of $2022 .{ }^{54}$
- Frequency has generally followed a similar pattern to loss cost. That is, a relatively flat trend between 2010 and 2015/2016, and decreasing thereafter. We observe a large decrease during 2020, 2021, and the first half of 2022 coincident with the COVID-19 pandemic.

Amongst other changes, Bill 15/91 reforms introduced lower pre-judgment interest rates on January 1,2015 , and higher deductibles on August 1,2015 , as well as a shift in costs from accident benefits to bodily injury for some claimants due to the reduced standard accident benefit levels for policies effective beginning June 1, 2016. The impact of these (possibly offsetting) reform changes on severity is not statistically discernable. ${ }^{55}$

We note that Bills 15/91 did not include explicit changes to the bodily injury coverage that would definitively explain the change in frequency trend to the steep declining pattern observed since 2015/2016. However, we note that Bill 15 included a change to the DRS effective April 1, 2016 that ended access to courts for accident benefits disputes. It is plausible that fewer bodily injury cases are being pursued since accident benefits claimants no longer have access to the courts. For example, under the prior DRS, claimants may have combined their accident benefits and bodily injury claims and consulted legal counsel with intent to go to court for settlement. We reiterate, the DRS change may or may not have contributed to the steep decline; the cause of the decline is unknown.

Due to the impact of the reforms prior to Reg 34/10 on our regression model design, as well as the relevance of those findings from those prior periods under different reforms, we begin our review of loss trend models beginning 2011-1.

The estimated severity, frequency, and loss cost trends, associated adjusted R-squared values, and p-values, over various trend measurement periods beginning 2011-1 (post Reg 34/10), with and without a seasonality parameter, level change reform parameters at January 1, 2015, August 1, 2015 and June 1, 2016^{56}, a change in trend parameter at April 1, 2016, and a mobility parameter ${ }^{57}$ are presented in Appendix E.

We fit a frequency model to all accident half-years between 2011-1 and 2022-2, and include seasonality ($p=0.000$), a change in trend rate parameter beginning April 1, 2016 ($p=0.000$), a mobility parameter ($p=0.000$), and a scalar (new normal) parameter at 2022-2 ($p=0.040$). The implied annual trend rates associated from our fitted frequency model ${ }^{58}$ is $+0.0 \%$ up to April 1, 2016 and -5.4% thereafter. The adjusted R -squared of our proposed frequency model is 0.978 .

Following the spike in 2020-1, the severity in 2020-2 to 2022-1 declined to levels closer to that of pre-pandemic levels in 2019. We fit a severity model to all accident half-years between 2011-1 and 2022-2, excluding 2020-1, and include only time ($p=0.000$). The implied annual trend rates associated from our fitted severity model is $+2.2 \%$. The adjusted R-squared of our proposed severity

[^26]model is 0.607 . Based on visual inspection, we attribute the somewhat lower adjusted R -squared to the model's inability to explain pre-2016 changes.

Due to the uncertainty of the most immature data points (2022-1 and 2022-2), we highlight the additional severity models which further support our selected severity trend rate of $+2.2 \%$:

- The implied annual trend rate associated with the severity model fit to all accident half-years between 2011-1 and 2022-1, excluding 2020-1, and include only time ($p=0.000$) is $+1.9 \%$. The adjusted R -squared of this model is 0.557 .
- The implied annual trend rate associated with the severity model fit to all accident half-years between 2011-1 and 2021-2, excluding 2020-1, and include only time ($p=0.000$) is $+2.2 \%$. The adjusted R -squared of this model is 0.709 .

In Figure 15, we present a comparison between the observed values presented above and the fitted frequency, severity, and loss cost values as implied by our selected models. The annual loss cost trend rate implied by the combined frequency and severity models is $+2.2 \%{ }^{59}$ up to April 1, 2016 and $-3.4 \%{ }^{60}$ thereafter. The implied adjusted R -squared of the combined frequency and severity model is 0.929 .

To assess reasonableness, we also include a model fit to the observed loss costs directly with the same parameterization as implied by our frequency and severity models. We note the model predictions based on the model fit to loss costs directly is not materially different than the predictions implied by our selected frequency and severity models.

As a result, we select past loss cost trends based on our selected frequency and severity models. Our selected past loss cost trend is $+2.2 \%$ prior to April 1, 2016 and -3.4% thereafter (up to April 1, 2022).

Additionally, given the dynamic nature of the recent inflationary environment, we recognize insurers may find an inflationary adjustment is required at the time of filing. Please refer to Section 7.3 for more details concerning the selection of an appropriate future loss cost trend rate.

[^27]Figure 15: Bodily Injury - Fitted Frequency, Severity and Loss Cost

8.2. Property Damage

In Figure 16, we present the estimated loss cost (average claim cost per vehicle), average severity (average claim cost per claim), and frequency rate (average claim incidence rate) over the period 2003-1 through 2022-2. We include a comparison to the estimated values used in our prior evaluation and observe decreases in the frequency and loss cost estimates.

Figure 16: Observed Property Damage Loss Cost Experience

A review of the historical data points (as presented in Figure 16) shows that subject to variability:

- Loss cost had exhibited a relatively flat trend between 2007 and 2012. After 2012, we observe increased variability and a generally upward trend, with the exception of a downward spike in 2017-1 and upward spike in 2019-2. We observe a large decrease during 2020 and 2021 coincident with the COVID-19 pandemic; and an apparent return to pre-COVID-19 levels in 2022-1.
- Severity had generally exhibited a small upward trend, which appears to have changed to a steeper increasing trend since the 2015/2016 reforms.
- Frequency has generally been decreasing, with more recent data exhibiting a steeper decrease until 2019-1. We observe a large decrease during 2020 and 2021 coincident with the COVID-19 pandemic; and an apparent return to pre-COVID-19 levels in 2022-2.

The estimated severity, frequency, and loss cost trends, associated adjusted R-squared values, and p-values, over various trend measurement periods beginning 2004-1 (post Bill 198), with and without a seasonality parameter, a change in trend parameter at January 1, 2013, and a mobility parameter are presented in Appendix E. Given the data volatility prior to 2007-1, we begin our review of models beginning at 2007-1.

We fit a frequency model to all accident half-years between 2007-1 and 2022-2, and include time ($p=0.000$), a mobility parameter ($p=0.000$), and a scalar (new normal) parameter at 2022-2 $(p=$ $0.003)$. The implied annual trend rates associated with our fitted frequency model is -2.1%. The adjusted R -squared is 0.954 .

We fit a severity model to all accident half-years between 2007-1 and 2022-2, and include time ($p=$ 0.000), and a change in trend parameter at January $1,2013(p=0.000)$. The implied annual trend rate associated with our fitted severity model is $+3.3 \%$ before January 1, 2013 and $+7.7 \%{ }^{61}$ thereafter. The adjusted R -squared of our proposed severity model is 0.963 .

In Figure 17, we present a comparison between the observed values presented above and the fitted frequency, severity, and loss cost values as implied by our fitted models. The annual loss cost trend rate implied by the combined frequency and severity models is $+1.1 \%^{62}$ before January 1,2013 and $+5.3 \%{ }^{63}$ thereafter. The implied adjusted R-squared of the combined frequency and severity model is 0.854 .

To assess reasonableness, we consider a model fit to the observed loss costs directly. Due to the volatility in loss costs over 2007-1 to 2008-2, we fit a loss cost model to all accident half-years between 2009-1 ${ }^{64}$ and 2022-2, and include time $(p=0.000)$ and mobility $(p=0.000)$. The implied annual trend rate associated with our fitted loss cost model is $+4.7 \%$. The adjusted R -squared of the direct loss cost model is 0.880 .

The model fit to loss costs directly, rather than on a combination of frequency and severity, results in a slightly lower trend rate of $+4.7 \%$, however appears to fit the post-2014-2 data slightly better than the implied loss cost model.

We select the past loss cost trend based on the direct loss cost model, with a $+4.7 \%$ annual trend rate.

Please refer to Section 7.3 for more details regarding considerations when selecting the future loss cost trend.

[^28]Figure 17: Property Damage - Fitted Frequency, Severity and Loss Cost

8.3. Direct Compensation Property Damage

In Figure 18, we present the estimated loss cost (average claim cost per vehicle), average severity (average claim cost per claim), and frequency rate (average claim incidence rate) over the period 2003-1 through 2022-2. We include a comparison to the estimated values used in our prior evaluation and observe that the estimates have not changed significantly.

Figure 18: Observed Direct Compensation Property Damage Loss Cost Experience

A review of the historical data points (as presented in Figure 18) shows that subject to variability:

- Loss cost has exhibited a relatively flat trend between 2004 and 2012, and an increasing trend thereafter. We observe a large decrease during 2020, 2021, and the first half of 2022 coincident with the COVID-19 pandemic.
- Severity has exhibited an increasing trend since 2013, with a brief flatter period between 2020 and 2021-1.
- Frequency has exhibited an increasing trend since 2013 and is subject to more variability than severity. We observe a large decrease during 2020 and 2021 coincident with the COVID-19 pandemic; and despite a rise in the 2022 frequency level, there is a continued large gap between pre-COVID-19 frequency levels and 2022 frequency levels.

The estimated severity, frequency, and loss cost trends, associated adjusted R-squared values, and p-values, over various trend measurement periods beginning 2004-1 (post Bill 198), with and
without a seasonality parameter, a change in trend parameter at January 1, 2013, and a mobility parameter are presented in Appendix E.

Our selected frequency model is fit to all accident half-years between 2004-1 and 2022-2 and includes a trend parameter after January $1,2013(p=0.000)$, a mobility parameter ($p=0.000$), and a scalar (new normal) parameter at 2022-2 ($p=0.000$). The implied annual trend rates associated with our fitted frequency model is 0.0% before January 1,2013 , and $+2.3 \%$ thereafter. The adjusted Rsquared of our proposed frequency model is 0.945 .

Our selected severity model is fit to all accident half-years between 2004-1 and 2022-2 and includes time $(p=0.003)$, seasonality $(p=0.000)$, and a change in trend parameter at January $1,2013(p=$ 0.000). The implied annual trend rate associated with our fitted severity model is $+0.5 \%$ before January 1, 2013, $+6.3 \%^{65}$ thereafter. The adjusted R-squared of our proposed severity model is 0.989 .

In Figure 19, we present a comparison between the observed values presented above and the fitted frequency, severity, and loss cost values as implied by our selected models. The annual loss cost trend rate implied by the combined frequency and severity models is $+0.5 \%{ }^{66}$ before January 1,2013 and $+8.8 \%{ }^{67}$ thereafter. The implied adjusted R-squared of the combined frequency and severity model is 0.957 .

To assess reasonableness, we also include a model fit to the observed loss costs directly with the same parameterization as implied by our frequency and severity models. We note the model predictions based on the model fit to loss costs directly are less than the predictions implied by our selected frequency and severity models.

As a result, we select past loss cost trends based on our selected frequency and severity models. Our selected past loss cost trend is $+0.5 \%$ prior to January 1, 2013 and $+8.8 \%$ thereafter (up to April 1, 2022).

Please refer to Section 7.3 for more details regarding considerations when selecting the future loss cost trend.

[^29]Figure 19: Direct Compensation Property Damage - Fitted Frequency, Severity and Loss Cost

8.4. Accident Benefits - Total

In prior reviews, we selected separate loss cost trend rates for accident benefits - medical/ rehabilitation/attendant care, disability income, and funeral/death benefits as the impact of the 2015 and 2016 reforms varied by sub-coverage. As we expect the experience period underlying insurer's rate applications will rely primarily on post-reform data going forward, our selected trend model is based on the combined total accident benefits experience. We continue to include models fit to accident-benefits sub-coverages in Appendix E for interested stakeholders.

In Figure 20, we present the estimated loss cost (average claim cost per vehicle), average severity (average claim cost per claim), and frequency (average claim incidence rate) over the period 2003-1 through 2022-2. We include a comparison to the estimated values used in our prior evaluation. We include a comparison to the estimated values used in our prior evaluation and observe that the estimates have not changed significantly.

Figure 20: Accident Benefits Total - Observed Frequency, Severity and Loss Cost

A review of the historical data points (as presented in Figure 20) shows that subject to variability:

- Loss cost exhibited an increasing trend following the September 2010 reform, followed by additional variability after the 2015/2016 reforms with a decreasing pattern. We observe a large decrease during 2020, 2021, and the first half of 2022 coincident with the COVID-19 pandemic.
- Severity has exhibited a generally upward trend between 2011 and 2016, followed by a decrease in 2017 and a generally flat thereafter, until a rise in 2020, followed by another rise in 2022-2. ${ }^{68}$
- Frequency exhibited an increasing trend after 2011, which changed to a flat/decreasing pattern after the introduction of the 2015/2016 reforms. We observe a large decrease during 2020, and

[^30]2021-1; , the frequency level in 2021-2 and 2022 remains well below 2019 levels, but higher than the early periods of the COVID-19 pandemic.

Due to the impact of the reforms prior to Reg 34/10 on our regression model design, as well as the relevance of those findings from the period prior to Reg 34/10, we begin our review of loss trend models at 2011-1.

The estimated severity, frequency, and loss cost trends, associated adjusted R-squared values, and p-values, over various trend measurement periods beginning 2011-1 (post Reg 34/10), with and without a seasonality parameter, reform scalar and change in trend parameters ${ }^{69}$ coincident with the June 1, 2016 implementation date, and a mobility parameter are presented in Appendix E.

We fit a frequency model to all accident half-years between 2011-2 ${ }^{70}$ and 2022-2, and include time ($p=0.000$), seasonality $(p=0.000)$, a change in trend rate parameter beginning June $1,2016(p=$ $0.003)$, a mobility parameter $(p=0.000)$, and a scalar (new normal) parameter at 2022-2 $(p=0.000)$. The implied annual trend rates associated with our fitted frequency model is $+2.5 \%$ up to June 1, 2016, and -1.1% thereafter once the reforms were fully implemented. The adjusted R-squared of our proposed frequency model is 0.978 .

It has been suggested that the pandemic has created an avoidance or lag in treatment resulting in untreated injuries for claimants with minor injuries. If this is true, the average severity would represent more seriously injured claimants than typical. Although we agree that this is plausible, we have no evidence to substantiate this theory, and would expect a return to more typical range of claimant injuries after the height of the pandemic.

We fit a severity model to all accident half-years between 2011-1 and 2022-2 that includes time ($p=$ 0.000), and a reform scalar parameter beginning June $1,2016(p=0.000)$. The implied annual trend rates associated with our fitted severity model is $+4.3 \%$. The modelled scalar parameter at June 1 , 2016, corresponds to a $23.8 \%{ }^{71}$ decrease in severity. The adjusted R-squared of our proposed severity model is 0.683 .

In Figure 21, we present a comparison between the observed values presented above and the fitted frequency, severity, and loss cost values as implied by our selected models. The annual loss cost trend rate implied by the combined frequency and severity models is $+7.0 \%^{72}$ up to June 1,2016 and $+3.2 \%^{73}$ thereafter. The modelled scalar parameter for the reforms that began June 1, 2016 corresponds to a 23.8% decrease in loss cost. The implied adjusted R-squared of the combined frequency and severity model is 0.913 .

To assess reasonableness, we also include a model fit to the observed loss costs directly with the same parameterization as implied by our frequency and severity models. We note the model fit to loss costs directly, rather than on a combination of frequency and severity, results in a slightly higher pre-reform trend rate, and lower post-reform trend rate, but a significantly higher adjusted Rsquared (0.973) and appears to fit the data better than the implied loss cost model.

[^31]We select the direct loss cost model, with an implied annual loss cost trend rate of $+6.8 \%$ up to June 1,2016 , and -0.1% thereafter once the reforms were fully implemented. The modelled scalar parameter at June 1, 2016 corresponds to a 20.7% decrease in loss cost.

Figure 21: Accident Benefits Total - Fitted Frequency, Severity and Loss Cost

8.5. Collision

In Figure 22, we present the estimated loss cost (average claim cost per vehicle), average severity (average claim cost per claim), and frequency rate (average claim incidence rate) over the period 2003-1 through 2022-2. We include a comparison to the estimated values used in our prior evaluation and observe that the estimates have not changed significantly.

Figure 22: Observed Collision Loss Cost Experience

A review of the historical data points (as presented in Figure 22) shows that subject to variability:

- Loss cost has exhibited a somewhat flat to modestly declining trend between 2004 and 2011, then a steep increasing trend thereafter. We observe a large decrease during 2020 and 2021-1 coincident with the COVID-19 pandemic, then an increasing pattern reversing the decline from the early part of the pandemic.
- Severity has exhibited an increasing trend since 2001 with a small dip in 2021-1, and a continued increase thereafter.
- Frequency has exhibited a declining pattern through 2011, then changing to an increasing trend since and is subject to a more variability than severity. Like loss cost, we observe a large decrease during 2020 and 2021-1 coincident with the COVID-19 pandemic; then an increasing pattern from 2021-1, but not a full return to pre-COVID-19 levels.

The estimated severity, frequency, and loss cost trends, associated adjusted R-squared values, and p-values, over various trend measurement periods beginning 2004-1 (post Bill 198), with and without a seasonality and mobility parameters, are presented in Appendix E.

Our selected frequency model is fit to all accident half-years between 2014-1 and 2022-2 and includes time $(p=0.006)$, a mobility parameter ($p=0.000$), and a scalar (new normal) parameter at 2022-2 ($p=0.004$). The implied annual trend rate associated with our fitted frequency model is $+2.5 \%$. The adjusted R -squared of our proposed frequency model is 0.918 .

Our selected severity model is fit to all accident half-years between 2014-1 and 2022-2, and includes time $(p=0.000)$ and seasonality $(p=0.007)$. The implied annual trend rate associated with our fitted severity model is $+6.1 \%$. The adjusted R -squared of our proposed severity model is 0.977 .

In Figure 23, we present a comparison between the observed values presented above and the fitted frequency, severity, and loss cost values as implied by our selected models. The annual loss cost trend rates implied by the combined frequency and severity models is $+8.8 \% .{ }^{74}$ The implied adjusted R -squared of the combined frequency and severity model is 0.882 .

To assess reasonableness, we also include a model fit to the observed loss costs directly with the same parameterization as implied by our frequency and severity models. We note the model predictions based on the model fit to loss costs directly is not materially different than the predictions implied by our selected frequency and severity models.

As a result, we select a past loss cost trend of $+8.8 \%$ based on our selected frequency and severity models.

Please refer to Section 7.3 for more details regarding considerations when selecting the future loss cost trend.

[^32]Figure 23: Collision - Fitted Frequency, Severity and Loss Cost

8.6. Comprehensive

Due to the significantly different loss cost trends in the theft peril compared to all other perils within the comprehensive coverage, we separately present the frequency, severity and loss cost trend rates for (1) Comprehensive - Theft, (2) Comprehensive - All Other, and (3) Comprehensive - Total. Our selected trend rate for comprehensive coverage is based on the Comprehensive - Total analysis.

Comprehensive - Theft

In Figure 24, we present the estimated loss cost (average claim cost per vehicle), average severity (average claim cost per claim), and frequency rate (average claim incidence rate) over the period 2003-1 through 2022-2. We include a comparison to the estimated values used in our prior evaluation and observe that the estimates have not changed significantly.

Figure 24: Observed Comprehensive - Theft Loss Cost Experience

A review of the historical data points (as presented in Figure 24) shows that subject to variability:

- Loss cost had exhibited a relatively flat/slight downward pattern from 2010 to 2015 . This changed to a rapidly increasing pattern beginning 2015/2016.
- Severity has been generally increasing since 2001, including a change to a steeper increase beginning in 2018.
- Frequency, following a period of decline through 2015, has since exhibited a positive trend. The trend pattern changed to a very steep upward trend in 2021 and 2022.

The estimated severity, frequency, and loss cost trends, associated adjusted R-squared values, and p-values, over various trend measurement periods beginning 2004-1 (post Bill 198), with and without seasonality, a change in trend parameter at 2016-1, a scalar parameter at 2018-2 and a mobility parameter are presented in Appendix E.

Due to the varying frequency and severity trend patterns over the experience period, the models of the loss cost data directly result in a better fit of the historical experience and a higher adjusted Rsquared value. Therefore, we base our trend selection on the loss cost data directly. Given what appears to be a change in the loss cost data pattern beginning 2011, we begin our review of models beginning at 2011-1. We select a loss cost model to balance stability and responsiveness to the more recent trend patterns.

Our selected loss cost model is fit to all accident half-years between 2011-1 and 2022-2 and includes time ($p=0.042$), a change in trend parameter at 2016-1 ($p=0.000$), a scalar parameter at 2021-2 ($p=000$), and seasonality ($p=0.006$). The implied annual trend rates associated with our fitted loss cost model is -3.3% up to January 1, 2016 and $+24.6 \%$ thereafter. Our model also includes a 65.7% increase at 2021-2. The adjusted R-squared of our proposed loss cost model is 0.983 .

As a result, we select a past loss cost trend is -3.3% up to January 1, 2016 and $+24.6 \%$ thereafter (up to April 1, 2022).

Please refer to Section 7.3 for more details regarding considerations when selecting the future loss cost trend.

Figure 25: Comprehensive Theft- Fitted Loss Cost

Comprehensive - All Other

In Figure 26, we present the estimated loss cost (average claim cost per vehicle), average severity (average claim cost per claim), and frequency rate (average claim incidence rate) over the period 2003-1 through 2022-2.

Figure 26: Observed Comprehensive - All Other Loss Cost Experience

A review of the historical data points (as presented in Figure 26) shows that subject to variability:

- Loss cost had exhibited a relatively flat but volatile pattern from 2009 to 2015 . This changed to an increasing, but still volatile, pattern beginning 2015/2016. We observe a large rise at 2021-2.
- Severity has been generally increasing since 2012 , with some minor variability.
- Frequency, following a period of decline through to 2005 , has exhibited volatility with a slight decreasing trend between 2011 and 2019. We observe a decline at 2020-1 to 2021-2, which we consider, in part, may be associated with the impact of the COVID-19 pandemic on frequency. Since then, a return to pre-COVID-19 levels (and higher).

The estimated severity, frequency, and loss cost trends, associated adjusted R-squared values, and p-values, over various trend measurement periods beginning 2004-1 (post Bill 198), with and without a seasonality parameter are presented in Appendix E.

Due to the varying frequency and severity trend patterns over the experience period, we achieved a better fit to the loss cost data directly with a higher adjusted R-squared value. Therefore, we base our trend selection on the loss cost data directly. Given what appears to be a change in the data pattern beginning 2011-1, we begin our review of models beginning at 2011-1. We select a loss cost model to balance credibility of and responsiveness to the more recent trend patterns.

Our selected loss cost model is fit to accident half-years between 2011-2 and 2022-1, excluding 2020-1 to 2021-1, and includes time ($p=0.000$) and seasonality ($p=0.004$). We exclude the 2020-1, 2020-2, and 2021-1 observations to remove the (possible) impact of the pandemic on the indicated trend rate. The implied annual trend rates associated with our fitted loss cost model is $+5.5 \%$. The adjusted R -squared of our proposed loss cost model is 0.731 .

As a result, we select a past loss cost trend of $+5.5 \%$, based on our direct loss cost model.
Please refer to Section 7.3 for more details regarding considerations when selecting the future loss cost trend.

Figure 27: Comprehensive - All Other - Fitted Loss Cost

Comprehensive - Total

In Figure 28, we present the loss cost fitted values as implied by our selected models in this section (comprehensive theft and comprehensive all other). Due to the differences in the trend rate for theft and all other, the by-peril composition of comprehensive claims varies over the period and the trend rate from the implied loss cost model is therefore not constant. Due to the additional complexity associated with this model, we also consider a loss cost model fit directly to the comprehensive total loss cost experience. Our final model design leverages the insights gained from the by-peril models described above.

Our selected loss cost model is fit to accident half-years between 2014-1 and 2022-2, excluding 2020-1 to 2021-1, and includes time ($p=0.000$), seasonality ($p=0.020$), and a scalar parameter at 2021-2 ($p=0.002$). We exclude the 2020-1, 2020-2, and 2021-1 observations to remove the (possible) impact of the pandemic on the indicated trend rate. We include a scalar parameter to be consistent with the selected model of comprehensive theft and the spike in loss cost observed in the
second half of 2021. The implied annual trend rates associated with our fitted loss cost model is $+10.4 \%$; and the scalar factor at 2021-2 is 1.370. The adjusted R-squared of our proposed loss cost model is 0.967 .

As a result, we select a loss cost trend of $+10.4 \%$ and scalar factor of 1.370 at 2021-2, based on our direct loss cost model. ${ }^{75}$

Please refer to Section 7.3 for more details regarding considerations when selecting the future loss cost trend.

Figure 28: Comprehensive Total - Fitted Loss Cost

8.7. All Perils

In Figure 29, we present the estimated loss cost (average claim cost per vehicle), average severity (average claim cost per claim), and frequency rate (average claim incidence rate) over the period 2003-1 through 2022-2. We include a comparison to the estimated values used in our prior evaluation and observe that the estimates have not changed significantly.

[^33]Figure 29: Observed All Perils Loss Cost Experience

A review of the historical data points (as presented in Figure 29) shows that subject to variability:

- Loss cost had exhibited a relatively flat/slightly declining pattern through to 2012, then changed to an increasing pattern. We observe a large decrease during 2020 and 2021-1 coincident with the COVID-19 pandemic and then a reversal of the decline in 2021-2, and a rising pattern thereafter.
- Severity had been consistently showing a rising pattern until a temporary flattening around 2020, followed by a steep rise at 2021-2 and continued rising pattern in 2022.
- Frequency, following a declining pattern through to about 2010, changed to an increasing pattern. We observe a large decrease during 2020 and 2022-1 coincident with the COVID-19 pandemic and then a change to a reversal of the decline in 2021-2 and 2022.

The estimated severity, frequency, and loss cost trends, associated adjusted R-squared values, and p-values, over various trend measurement periods beginning 2004-1 (post Bill 198), with and without a seasonality parameter and mobility parameter are presented in Appendix E.

We fit our selected frequency model to all accident half-years between 2013-1 and 2022-2, and include time $(p=0.000)$, a mobility parameter ($p=0.000$), and a scalar (new normal) parameter at 2022-2 ($p=0.007$). The implied annual trend rates associated with our fitted frequency model is $+3.8 \%$. The adjusted R -squared of our proposed frequency model is 0.868 .

Our selected severity model is fit to all accident half-years between 2013-1 and 2022-2, and includes time $(p=0.000)$, and seasonality $(p=0.011)$. The implied annual trend rate associated with our fitted severity model is $+6.1 \%$. The adjusted R -squared of our proposed severity model is 0.918 .

In Figure 30, we present a comparison between the observed values presented above and the fitted frequency, severity, and loss cost values as implied by our selected models. The annual loss cost trend rate implied by the combined frequency and severity models is $+10.0 \% .{ }^{76}$ The implied adjusted R -squared of the combined frequency and severity model is 0.882 .

To assess reasonableness, we also include a model fit to the observed loss costs directly with the same parameterization as implied by our frequency and severity models. We note the model predictions based on the model fit to loss costs directly is not materially different than the predictions implied by our selected frequency and severity models.

As a result, we select past loss cost trend of $+10.0 \%$ based on our selected frequency and severity models.

Please refer to Section 7.3 for more details regarding considerations for selecting the future loss cost trend rate.

[^34]Figure 30: All Perils - Fitted Frequency, Severity and Loss Cost

8.8. Specified Perils

In Figure 31, we present the estimated loss cost (average claim cost per vehicle), average severity (average claim cost per claim), and frequency rate (average claim incidence rate) over the period 2003-1 through 2022-2. We include a comparison to the estimated values used in our prior evaluation and observe the 2020-1 severity, frequency, and loss cost estimates have increased.

Figure 31: Observed Specified Perils Loss Cost Experience

A review of the historical data points (as presented in Figure 31) shows that subject to variability:

- Frequency, severity and loss cost have all exhibited a relatively flat pattern since 2012 with a large amount of variability; and a rise in both frequency and severity in 2021.

We are unable to discern a trend rate for specified perils due to the large variability and overall flat pattern observed since 2011. We, therefore, select the comprehensive trend rate for specified perils due to the similarities in coverage.

8.9. Uninsured Auto

In Figure 32, we present the estimated loss cost (average claim cost per vehicle), average severity (average claim cost per claim), and frequency rate (average claim incidence rate) over the period 2003-1 through 2022-2. We include a comparison to the estimated values used in our prior evaluation and observe that the immature severity and loss cost estimates have increased.

Figure 32: Observed Uninsured Auto Loss Cost Experience

A review of the historical data points (as presented in Figure 32) shows that subject to variability:

- Loss cost has exhibited a modestly declining pattern since 2012. As noted below, we observe a drop in the frequency level at 2020-1 and 2021-1 which we consider, in part, is associated with the impact of the COVID-19 pandemic that affects the loss cost levels over the same period.
- After a rise in level during 2008, severity has exhibited a generally flat pattern but with considerable volatility.
- Frequency has been steadily declining since about 2006, although less steep since 2015. We observe a drop in level at 2020-1 through 2021-1 which we consider, in part, is associated with the impact of the COVID-19 pandemic on frequency.

The estimated severity, frequency, and loss cost trends, associated adjusted R-squared values, and p-values, over various trend measurement periods beginning 2004-1 (post Bill 198), with and
without a seasonality parameter, a change in trend rate at January 1, 2015, and a mobility parameter are presented in Appendix E .

Given the steady declining frequency pattern beginning around 2006, we begin our review of models at 2006-1.

Due to the significant variance associated with the limited claim volume, we are unable to discern a significant severity trend for uninsured auto. Therefore, we base our trend selection on the loss cost data directly.

We select a loss cost model for accident half-years between 2010-1 and 2022-2, excluding 2020-1 through 2021-1, and include time $(p=0.000)$, a change in trend rate parameter at January 1,2015 ($p=0.000$), seasonality ($p=0.006$). We exclude the 2020-1, 2020-2, and 2021-1 observations to remove the impact of the pandemic on the indicated trend rate.

The implied annual trend rate associated with this loss cost model is -9.3\% up to December 31, 2014, and $+0.1 \%$ thereafter. The adjusted R -squared of our proposed frequency model is 0.771 .

As a result, we select a loss cost trend of -9.3% up to December 31, 2014, and $+0.1 \%$ thereafter, based on our direct loss cost model.

Please refer to Section 7.3 for more details regarding considerations for selecting the future loss cost trend rate.

Figure 33: Uninsured Auto - Fitted Loss Cost

8.10. Underinsured Motorist

In Figure 34, we present the estimated loss cost (average claim cost per vehicle), average severity (average claim cost per claim), and frequency rate (average claim incidence rate) over the period 2003-1 through 2022-2. We include a comparison to the estimated values used in our prior evaluation and observe some variance in the immature severity and loss cost estimates.

Figure 34: Observed Underinsured Motorist Loss Cost Experience

A review of the historical data points (as presented in Figure 34) shows that subject to variability:

- Frequency and loss cost have all exhibited a relatively flat pattern since 2010 with a large amount of variability. In 2020 and 2021 frequency exhibits a downward pattern, which we consider, in part, is associated with the impact of the COVID-19 pandemic on frequency. We observe a large increase in 2022-1.
- Severity has exhibited a slight upward trend since 2011 but is subject to considerable volatility.

We are unable to discern a frequency, severity or loss cost trend rate for underinsured motorist. We, therefore, select a 0% frequency trend rate. As underinsured motorist severity trend is often associated with bodily injury, we select the same severity trend as we did for bodily injury, $+2.2 \%$.

As a result, we select past loss cost trend of $+2.2 \%$ based on our selected frequency and severity models.

Please refer to Section 7.3 for more details regarding considerations for selecting the future loss cost trend rate.

8.11. Trend Summary- All Coverages

We summarize our trend analyses in Table 21 where we present our selected past annual loss cost trend rates based on insurance industry data as of December 31, 2022. Due to the dynamic nature of the current economic environment, future trend rates are not presented. The future trend rates will likely differ from the past trend rates as it will be appropriate to account for changes in current and forecasted economic conditions at the time of a rate application is submitted as discussed in Section 7.3.

Table 21: Selected Loss Cost Trends - as of December 31, 2022

Coverage	Current Trend Selection as of December 31, 2022
Bodily Injury	$+2.2 \%$ up to March 31, 2016 -3.4% after April 1, 2016
Property Damage	$+4.7 \%$
DCPD	$+0.5 \%$ up to December 31, 2012 $+8.8 \%$
Accident Benefits January 1, 2013	

In addition to the impact of the Bill 15 and Bill 91 reforms on loss trend rates, we estimate the impact of these reforms is a 20.7% decrease in accident benefits loss costs. We estimate that the decrease was "phased in" between the 2016-1 and 2017-2 accident semesters.

[^35]We summarize the trend selections from our prior analyses, using data as of June 30,2022 , in Table 22.

Table 22: Prior Selected Loss Cost Trends as of June 30, 2022

Coverage	Prior Trend Selection as of June 30, 2022
Bodily Injury	+1.6\% up to March 31, 2016 -4.2\% after April 1, 2016
Property Damage	+4.9\%
DCPD	$\begin{gathered} +0.6 \% \text { up to December 31, } 2012 \\ +8.5 \% \text { after January } 1,2013 \end{gathered}$
Accident Benefits	+6.7\% up to May 31, 2016 -1.0% after June 1, 2016^{82}
Uninsured Auto	-9.2\% up to December 31, 2014 -0.6\% after January 1, 2015
Collision	+8.7\%
Comprehensive	+10.4\% ${ }^{83}$
Specified Perils	+10.4\% ${ }^{84}$
All Perils	+10.0\%
Underinsured Motorist	+1.6\%

[^36]
Appendix A. Development Factor Exhibits

Financial Services Regulatory Authority of OntarioPrivate Passengers Vehicles (Excluding Farmers)														
Claim Count Development Summary Data as of 12/31/22														
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
GISA Selected Age-to-Ultimate Development Factors														
		Third Party Liability -	Third Party Liability -		Accident Benefits -	Accident Benefits -								
Maturity	$\underset{\substack{\text { Third Party Liability } \\ \text { Bodily Injury }}}{\text { - }}$	$\begin{gathered} \text { Property Damage } \\ \text { Only } \end{gathered}$	$\begin{gathered} \text { Direct } \\ \text { Compensation } \end{gathered}$	Accident Benefits Total Medical/Rehab	Total Disability Income	Funeral \& Death Benefits	Accident Benefits Quebec Excess	Collision	$\begin{aligned} & \text { Comprehensive - } \\ & \text { Total } \end{aligned}$	Comprehensive Theft	All Perils	Specified Perils	Uninsured Auto	Underinsured Motorist
6	0.752	1.326	1.036	0.895	1.111	1.071	0.506	0.984	1.122	1.008	1.037	0.992	1.123	1.385
12	0.934	1.207	1.003	0.979	0.845	0.958	0.777	0.999	1.013	0.999	1.003	0.999	0.979	1.077
18	1.030	1.089	1.001	0.998	0.890	0.992	0.988	1.000	1.003	1.000	1.000	0.996	0.980	0.946
24	0.993	1.029	1.000	1.001	0.932	1.006	0.979	1.000	1.001	1.000	1.000	1.000	0.984	0.769
30	0.883	1.004	1.000	1.000	0.953	1.002	0.920	1.000	1.000	1.000	1.000	1.000	0.983	0.486
36	0.883	1.001	1.000	1.001	0.962	1.001	0.980	1.000	1.000	1.000	1.000	1.000	0.985	0.496
42	0.898	1.000	1.000	1.001	0.972	0.998	0.990	1.000	1.000	1.000	1.000	1.000	0.986	0.551
48	0.915	1.000	1.000	1.001	0.981	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.989	0.604
54	0.931	1.000	1.000	1.000	0.988	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.991	0.671
60	0.945	1.000	1.000	1.000	0.991	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.993	0.729
66	0.958	1.000	1.000	1.000	0.995	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.995	0.788
72	0.969	1.000	1.000	1.000	0.996	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.995	0.838
78	0.977	1.000	1.000	1.000	0.997	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.995	0.876
84	0.982	1.000	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.996	0.906
90	0.988	1.000	1.000	1.000	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.997	0.934
96	0.992	1.000	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.998	0.964
102	0.995	1.000	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.974
108	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.981
114	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.994
120	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
126	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
132	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
138	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
144	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
150	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
156	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
162	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
168	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
174	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
180	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
186	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
192	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
198	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
204	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
210	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
216	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
222	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
228	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
234	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
240	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

nancial Services Regulatory Authority of Ontario

Private Passengers Vehicles (Excluding Farmers)
Reported Incurred Claims and ALAE Development Summary
Data as of $12 / 31 / 22$
(1)

Appendix B. Loss Cost Summary Exhibits

Financial Services Regulatory Authority of Ontario Accident Benefits - Quebec Excess
Private Passengers Vehicles (Excluding Farmers)
Loss Cost Summary
Data as of $12 / 31 / 22$

(1)	(2)	$\underset{\text { Exhibit }}{(1)}$	${ }_{\text {Exhibit }}^{(4)} \text { GLSA }$	${ }_{\text {Exhibit } 2 \text { cisa }}^{(5)}$	(6)	$\left(5^{(7)}{ }^{(7)}\right.$	$\begin{gathered} (8) \\ (7)(3)^{*}+1000 \end{gathered}$	(9)	$\begin{gathered} (10) \\ (7)(4)^{*} \times 1000 \end{gathered}$	(11)	$\begin{gathered} (12) \\ (4) /(3)^{*}+1000 \end{gathered}$	(13)	(14)	(15)
Accident Semester	Maturity (in Months)	Earned Car Years	Ultimate Claim Counts	Ultimate Claims and ALAE (000)	$\begin{gathered} \text { ULAE } \\ \text { Adjustment } \end{gathered}$	Ultimate Losses \& LAE (000)	Ultimate Loss Cost	$\begin{aligned} & \text { \% Change } \\ & \text { Seasonal } \\ & \text { Accident Half } \\ & \text { Years } \end{aligned}$	Ultimate Severity	$\begin{gathered} \text { \% Change } \\ \text { Seasonal } \\ \text { Accident Half } \\ \text { Years } \end{gathered}$	Ultimate Freq per 1000	$\begin{gathered} \text { \% Change } \\ \text { Seasonal } \\ \text { Accident Half } \\ \text { Years } \end{gathered}$	Annual Loss Cost $\&$ LAE	$\begin{gathered} \text { \% Change } \\ \text { Accident Years } \end{gathered}$
2003.1	240	2,896,602	9	430	1.084	466	0.16		51,813		0.00			
2003.2	234	2,979,855	3	14	1.084	15	0.01		5,079		0.00		0.08	
2004.1	228	2,925,523	1	179	1.100	197	0.07	-58.1\%	197,201	280.6\%	0.00	-89.0\%		
2004.2	222	3,001,192	2	80	1.100	88	0.03	474.4\%	44,070	767.7\%	0.00	-33.8\%	0.05	-41.2\%
2005.1	216	2,960,878	2	${ }^{2}$	1.092	2	0.00	-98.8\%	1,158	-99.4\%	0.00	97.6\%		
2005.2	210	3,078,978	4	152	1.092	166	0.05	83.5\%	41,481	-5.9\%	0.00	94.9\%	0.03	-42.1\%
2006.1	204	3,038,070	1	0	1.082	0	0.00	-81.5\%	439	-62.0\%	0.00	-51.3\%		
2006.2	198	3,144,172	7	36	1.082	39	0.01	-77.1\%	5,545	-86.6\%	0.00	71.4\%	0.01	-77.2\%
2007.1	192	3,098,547	1	45	1.085	49	0.02	10808.4\%	48,874	11025.6\%	0.00	-2.0\%		
2007.2	186	3,207,341	6	154	1.085	168	0.05	323.2\%	27,928	403.7\%	0.00	-16.0\%	0.03	440.6\%
2008.1	180	3,178,859	1	86	1.076	93	0.03	85.3\%	92,900	90.1\%	0.00	-2.5\%		
2008.2	174	3,266,405	4	363	1.076	390	0.12	128.8\%	97,622	249.5\%	0.00	-34.5\%	0.07	118
2009.1	168	3,198,659	2	215	1.075	231	0.07	146.9\%	115,403	24.2\%	0.00	98.8\%		
2009.2	162	3,293,419	3	249	1.075	268	0.08	-31.9\%	89,381	-8.4\%	0.00	-25.5\%	0.08	2.5\%
2010.1	156	3,228,356	1	38	1.066	41	0.01	-82.6\%	40,649	-64.8\%	0.00	-50.5\%		
2010.2	150	3,335,562	3	7	1.066	8	0.00	-97.1\%	2,645	-97.0\%	0.00	-1.3\%	0.01	-90.4\%
2011.1	144	3,280,498	${ }^{2}$	64	1.083	69	0.02	67.7\%	34,631	-14.8\%	0.00	96.8\%		
2011.2	138	3,385,346	7	31	1.083	34	0.01	322.6\%	4,862	83.8\%	0.00	129.9\%	0.02	109.4\%
2012.1	132	3,341,383	1	12	1.080	13	0.00	-81.0\%	13,413	-61.3\%	0.00	-50.9\%		
2012.2	126	3,431,975	4	24	1.080	26	0.01	-25.2\%	6,448	32.6\%	0.00	-43.6\%	0.01	62.6\%
2013.1	120	3,373,607	2	50	1.080	54	0.02	299.3\%	27,037	101.5\%	0.00	98.1\%		
2013.2	114	3,486,726	2	23	1.080	25	0.01	-4.2\%	12,554	94.7\%	0.00	-50.\%	0.01	9.4%
2014.1	108	3,420,268	2	1	1.085	1	0.00	-99.0\%	271	-99.\%	0.00	-1.4\%		
2014.2	102	3,539,687	5	840	1.085	912	0.26	3476.9\%	182,34	1352.5\%	0.00	146.3\%	0.13	1035.6\%
2015.1	96	3,484,941	4	65	1.104	72	0.02	12973.2\%	18,071	6560.2\%	0.00	96.3\%		
2015.2	90	3,613,617	4	41	1.104	45	0.01	-95.2\%	11,215	-93.8\%	0.00	-21.6\%	0.02	-87.4\%
2016.1	84	3,581,762	0	2	1.099	2	0.00	-97.1\%	\#Divo!	\#DIV/0!	0.00	-100.0\%		
2016.2	78	3,711,425	2	23	1.099	26	0.01	-44.2\%	12,863	14.7\%	0.00	-51.3\%	0.00	76.8\%
2017.1	72	3,670,573	3	25	1.099	27	0.01	1139.6\%	9,131	\#Div/0!	0.00	\#DIV/0!		
2017.2	66	3,818,717	2	${ }^{41}$	1.099	45	0.01	71.0\%	22,636	76.0\%	0.00	-2.8\%	0.01	153.8\%
2018.1	60	3,766,444	4	33	1.104	36	0.01	28.3\%	9,014	-1.3\%	0.00	29.9\%		
2018.2	54	3,903,907	4	55	1.104	61	0.02	31.9\%	15,263	-32.6\%	0.00	95.6\%	0.01	30.5\%
2019.1	48	3,852,042	6	42	1.113	47	0.01	27.\%	7,814	-13.3\%	0.00	46.7\%		
2019.2	42	3,971,091	3	16	1.113	18	0.00	-71.0\%	6,064	-60.3\%	0.00	-27.0\%	0.01	-34.5\%
2020.1	36	3,881,998	4	184	1.135	208	0.05	340.8\%	53,110	579.6\%	0.00	-35.1\%		
2020.2	30	3,976,948	2	34	1.135	38	0.01	111.2\%	20,706	241.5\%	0.00	-38.2\%	0.03	277.9\%
2021.1	24	3,914,124	1	5	1.136	6	0.00	-97.2\%	6,021	-88.7\%	0.00	-75.2\%		
2021.2	18	4,036,478	2	4	1.136	4	0.00	-89.2\%	2,104	-89.8\%	0.00	5.8\%	0.00	-96.0\%
2022.1	12	3,968,768	2	50	1.117	56	0.01	838.7\%	24,054	299.5\%	0.00	135.0\%		
2022.2	6	4,090,676	12	184	1.117	206	0.05	4789.0\%	17,702	741.2\%	0.00	481.2\%	0.03	472.5\%
Total		138,335,421	130	3,90		4,254								

Ultimate Loss Cost
Financial Services Regulatory Authority of Ontario
Collision
Private Passengers Vehicles (Excluding Farmers)
Loss Cost Summary
Data as of 12/31/22

(1)	(2)	$\underset{\text { Exxibity }}{(3)}$	$\text { Exxibit } 3 \text { SiSA }$	${ }_{\text {Exhbiti 2 } 2 \text { Gisa }}^{(5)}$	(6)	$\stackrel{(7)}{(5)}$	$\begin{gathered} (8) \\ (7) /(3) * 1000 \end{gathered}$	(9)	$\begin{gathered} (10) \\ (7) /(4) *=1000 \end{gathered}$	(11)	$\begin{gathered} (12) \\ (4) /(3))^{(1000} \end{gathered}$	(13)	(14)	(15)
Accident Semester	Maturity (in Months)	Earned Car Years	Ultimate Claim Counts	Ultimate Claims and ALAE (000)	$\underset{\text { Adiustment }}{\text { ULE }}$	Ultimate Losses \& LAE (000)	Ultimate Loss Cost	$\begin{gathered} \text { \% Change } \\ \text { Seasonal } \\ \text { Accident Half } \\ \text { Years } \end{gathered}$	Ultimate Severity	$\begin{aligned} & \text { \% Change } \\ & \text { Seasonal } \\ & \text { Accident Half } \\ & \text { Years } \end{aligned}$	Ultimate Freq. per 1000	$\begin{gathered} \text { \% Change } \\ \text { Seasonal } \\ \text { Accident Half } \\ \text { Years } \end{gathered}$	$\underset{\&}{\text { Annual Loss Cost }}$	$\begin{gathered} \text { \% Change } \\ \text { Accident Years } \end{gathered}$
2003.1	240	1,956,293	79,588	359,479	1.084	389,675	199.19		4,896		40.68			
2003.2	234	1,984,399	65,615	301,813	1.084	327,165	164.87		4,986		33.07		181.91	
2004.1	228	1,924,769	66,861	286,031	1.100	314,634	163.47	-17.9\%	4,706	-3.9\%	34.74	-14.6\%		
2004.2	222	1,975,186	63,633	284,738	1.100	313,212	158.57	-3.8\%	4,922	-1.3\%	32.22	-2.6\%	160.99	-11.5\%
2005.1	216	1,972,280	65,071	283,783	1.092	309,891	157.12	-3.9\%	4,762	1.2\%	32.99	-5.0\%		
2005.2	210	2,056,467	64,077	308,758	1.092	337,163	163.95	3.4\%	5,262	6.9\%	31.16	-3.3\%	160.61	-0.2\%
2006.1	204	2,030,101	61,121	277,935	1.082	300,726	148.13	-5.7\%	4,920	3.3\%	30.11	-8.7\%		
2006.2	198	2,101,498	67,052	310,330	1.082	335,778	159.78	-2.5\%	5,008	-4.8\%	31.91	2.4\%	154.06	-4.1\%
2007.1	192	2,077,455	73,381	334,636	1.085	363,080	174.77	18.0\%	4,948	0.6\%	35.32	17.3\%		
2007.2	186	2,151,716	68,700	333,822	1.085	362,196	168.33	5.4\%	5,272	5.3\%	31.93	0.1\%	171.49	11.3\%
2008.1	180	2,144,444	68,424	327,225	1.076	352,094	164.19	-6.1\%	5,146	4.0\%	31.91	-9.7\%		
2008.2	174	2,209,010	66,800	341,150	1.076	367,078	166.17	-1.3\%	5,495	4.2\%	30.24	-5.3\%	165.20	-3.7\%
2009.1	168	2,165,335	65,728	311,855	1.075	335,244	154.82	-5.7\%	5,100	-0.9\%	30.35	-4.9\%		
2009.2	162	2,221,654	62,456	307,076	1.075	330,107	148.59	-10.6\%	5,285	-3.8\%	28.11	-7.0\%	151.66	8.2\%
2010.1	156	2,177,012	59,047	294,462	1.066	313,896	144.19	-6.9\%	5,316	4.2\%	27.12	-10.6\%		
2010.2	150	2,245,514	61,451	329,000	1.066	350,713	156.18	5.1\%	5,707	8.0\%	27.37	-2.7\%	150.28	-0.9\%
2011.1	144	2,206,419	61,897	321,648	1.083	348,345	157.88	9.5\%	5,628	5.9\%	28.05	3.4\%		
2011.2	138	2,273,410	58,998	322,379	1.083	349,136	153.57	-1.7\%	5,928	3.9\%	25.91	-5.3\%	155.69	3.6\%
2012.1	132	2,248,832	56,729	302,098	1.080	326,145	145.03	-8.1\%	5,749	2.2\%	25.23	-10.1\%		
2012.2	126	2,313,887	59,545	332,190	1.080	358,633	154.99	0.9\%	6,023	1.6\%	25.73	-0.7\%	150.08	-3.6\%
2013.1	120	2,278,071	61,486	331,113	1.080	357,470	156.92	8.2\%	5,814	1.1\%	26.99	7.0\%		
2013.2	114	2,358,778	66,889	381,241	1.080	411,588	174.49	12.6\%	6,153	2.2\%	28.36	10.2\%	165.86	10.5\%
2014.1	108	2,325,830	72,362	389,079	1.085	422,262	181.55	15.7\%	5,835	0.4\%	31.11	15.3\%		
2014.2	102	2,418,270	65,896	380,394	1.085	412,837	170.72	-2.2\%	6,265	1.8\%	27.25	-3.9\%	176.03	6.1\%
2015.1	96	2,391,577	73,248	410,914	1.104	453,526	189.63	4.5\%	6,192	6.1\%	30.63	-1.6\%		
2015.2	90	2,491,736	68,953	409,773	1.104	452,267	181.51	6.3\%	6,559	4.7\%	27.67	1.6\%	185.49	5.4\%
2016.1	84	2,475,371	72,946	443,287	1.099	487,350	196.88	3.8\%	6,681	7.9\%	29.47	-3.8\%		
2016.2	78	2,550,911	77,556	508,689	1.099	559,253	219.24	20.8\%	7,211	9.9\%	30.40	9.9\%	20.23	12.3\%
2017.1	72	2,507,514	74,853	477,826	1.099	525,131	209.42	6.4\%	7,015	5.0\%	29.85	1.3\%		
2017.2	66	2,588,680	83,124	579,827	1.099	637,229	246.16	12.3\%	7,666	6.3\%	32.11	5.6\%	228.08	9.5\%
2018.1	60	2,541,492	83,370	571,335	1.104	631,034	248.29	18.6\%	7,569	7.9\%	32.80	9.9\%		
2018.2	54	2,626,902	85,029	628,999	1.104	694,723	264.46	7.4\%	8,170	6.6\%	32.37	0.8\%	256.51	12.5\%
2019.1	48	2,591,630	87,223	635,905	1.113	707,458	272.98	9.9\%	8,111	7.2\%	33.66	2.6\%		
2019.2	42	2,667,828	87,168	671,437	1.113	746,988	280.00	5.9\%	8,570	4.9\%	32.67	0.9\%	276.54	7.8\%
2020.1	36	2,609,351	54,662	415,425	1.135	471,405	180.66	-33.8\%	8,624	6.3\%	20.95	-37.8\%		
2020.2	30	2,667,319	54,906	421,478	1.135	478,274	179.31	-36.0\%	8,711	1.6\%	20.58	-37.0\%	179.98	-34.9\%
2021.1	24	2,615,885	43,123	319,148	${ }^{1.136}$	362,414	138.54	-23.3\%	8,404	-2.5\%	16.49	-21.3\%		
2021.2	18	2,691,372	64,725	530,074	${ }^{1.1136}$	601,934	223.65	24.7\%	9,300	6.8\%	24.05	16.8\%	181.70	1.0
2022.1	12	2,643,375	69,382	600,355	1.117	670,707	253.73	83.1\%	9,667	15.0\%	26.25	59.2\%		
2022.2	6	2,726,767	75,874	701,338	1.117	783,523	287.35	28.5\%	10,327	11.0\%	27.83	15.7\%	270.80	49.0\%
Total		93,204,340	2,718,848	16,078,048		17,652,285								

	Ultimate Loss Cost
350.00	
300.00	
250.00	
100.00	
50.00	
0.00	
	or od

Financial Services Regulatory Authority of Ontario Private Passengers Vehicles（Excluding Farmers）
Loss Cost Summary
Data as of $12 / 31 / 22$

${ }^{(1)}$	（2）	$\begin{gathered} \text { Exabit } \\ \text { Exic } \end{gathered}$	$\underset{\text { Explibit }}{(4)}$	${ }_{\text {Exhbit }}^{\text {Ex }}$	（6）	${ }_{(55)}^{(7)}{ }_{(0)}{ }_{60}$	$\begin{gathered} (8) \\ (7) /(3))^{4} 1000 \end{gathered}$	（9）	$\begin{aligned} & (10) \\ & (7) /(4))^{4} 1000 \end{aligned}$	（11）	$\begin{aligned} & (4) /(32) \cdot 1000 \\ & \left(\begin{array}{l} (12) \end{array}\right) . \end{aligned}$	（13）	（14）	（15）
	Maturity（in		Ultimate Claim	Ultimate Claims		Ultimate Losses		$\begin{gathered} \text { \% change } \\ \text { Seasonal } \\ \text { Accident Half } \end{gathered}$		$\begin{gathered} \text { \% Change } \\ \text { Seasonal } \\ \text { Accident Half } \end{gathered}$		$\begin{gathered} \text { \% Change } \\ \text { Seasonal } \\ \text { Accident Half } \end{gathered}$	Annual Loss Cost	\％Change
Accident Semester	Months）	Earned Car Years	Counts	and ALAE（000）	Adjustment	\＆LAE（000）	Cost	Years	Severity	Years	per 1000	Years	\＆LAE	Accident Years
2003.1	240	2，230，854	12，123	79，318	1.084	85，981	38.54		7，092		5.43			
2003.2	234	2，245，339	12，413	80,838	1.084	87，629	39.03		7，059		5.53		38.79	
2004.1	228	2，195，365	10，345	66，573	1.100	73，231	33.36	－13．5\％	7，079	－0．2\％	4.71	－13．3\％		
2004.2	222	2，235，020	10，028	61，275	1.100	67，402	30.16	－22．7\％	6，721	－4．8\％	4.49	－18．8\％	31.74	－1828
2005.1	216	2，243，151	7，934	54，885	1.092	59，934	26.72	－19．9\％	7，554	6．7\％	3.54	－24．9\％		
2005.2	210	2，353，927	8，468	58，09	1.092	63，346	26.91	－10．8\％	7，481	11．3\％	3.60	－19．8\％	26.82	
2006.1	204	2，301，105	7，860	55，927	1.082	60，513	26.30	－1．6\％	7，699	1．9\％	3.42	－3．4\％		
2006.2	198	2，359，048	8，299	${ }^{63,779}$	1.082	69，009	29.25	8．7\％	${ }_{8,35}$	11．2\％	3.52	－2．2\％	27.79	
2007.1	192	2，345，541	7，515	57，196	1.085	62，058	26.46	0．6\％	8，258	7．3\％	3.20	－6．2\％		
2007.2	186	2，411，946	7，151	${ }^{60,127}$	${ }^{1.085}$	65，238	27.05	－7．5\％	9，123	9．7\％	2.96	－15．7\％	26.76	
2008.1	180	2，417，924	6，288	49，162	1.076	52,899	21.88	－17．3\％	8,413	1．9\％	2.60	－18．8\％		
2008.2	174	2，472，259	6，477	50，254	${ }^{1.076}$	54，074	21.87	－19．1\％	${ }^{8,349}$	－8．5\％	2.62	－11．6\％	21.87	
2009.1	168	2，445，739	5，990	44，103	1.075	47，411	19.38	－11．4\％	7，915	－5．9\％	2.45	－5．8\％		
2009.2	162	2，491，932	6，083	49，624	1.075	53，346	${ }^{21.41}$	－2．1\％	8，770	5．0\％	2.44	－6．8\％	20.41	
2010.1	156	2，461，169	4，225	34，730	1.066	37，022	15.04	－22．4\％	8，763	10．7\％	1.72	－29．9\％		
2010．2	150	2，517，236	4，003	37，519	1.066	39，995	15.89	－25．8\％	9，992	13．9\％	1.59	－34．9\％	15.47	
2011.1	144	2，492，508	3，648	34，117	1.083	36，948	14.82	－1．5\％	10，129	15．6\％	1.46	－14．7\％		
2011.2	${ }^{138}$	2，541，850	3，856	38，077	${ }^{1.083}$	41，162	16.19	1．9\％	10，676	6．8\％	1.52	－4．\％	15.52	
2012.1	132	2，530，581	3，402	${ }^{31,034}$	1.080	33，505	13.24	－10．7\％	9，849	－2．8\％	1.34	－8．1\％		
2012.2	126	2，578，830	3，227	31，934	1.880	34，476	13.37	－17．4\％	10，684	0．1\％	1.25	－17．5\％	13.30	
2013.1	120	2，556，533	2，851	29，219	1.080	31，545	12.34	－6．8\％	11，065	12．4\％	1.12	－17．1\％		
2013.2	114	2，616，631	3，133	33，237	1.080	35，883	13.71	2．6\％	11，455	7．2\％	1.20	－4．3\％	13.03	
2014.1	108	2，598，864	2，677	31，436	1.085	34，117	13.13	6．4\％	12，747	15．2\％	1.03	－7．6\％		
2014.2	102	2，667，579	2，982	33，031	1.085	35，849	13.44	－2．0\％	12，020	4．9\％	1.12	－6．6\％	13.29	
2015.1	96	2，657，868	2，769	32，160	1.104	35，495	13.35	1．7\％	12，821	0．6\％	1.04	1．1\％		
2015．2	90	2，736，402	3，215	40，134	1.104	44，296	16.19	20．5\％	13，780	14．6\％	1.17	5．1\％	14.79	
2016.1	84	2，729，537	2，678	31，450	1.099	34，576	12.67	－5．1\％	12，913	0．7\％	0.98	－5．8\％		
2016.2	78	2，776，523	3，339	41，350	1.099	45，461	16.37	1．1\％	13，616	－1．2\％	1.20	2．4\％	14.54	
2017．1	72	2，746，271	3，038	38，382	1.099	42，182	15.36	21．3\％	13，886	7．5\％	1.11	12．8\％		
2017.2	66	2，798，209	3，592	45，565	1.099	50，076	17.90	9．3\％	13，941	2．4\％	1.28	6．7\％	16.64	
2018.1	60	2，763，148	3，720	50，755	1.104	56，058	20.29	32．1\％	15，069	8．5\％	1.35	21．7\％		
2018.2	54	2，821，439	4，360	69，735	1.104	77，022	27.30	52．5\％	17，667	26．7\％	1.55	20．4\％	23.83	
2019.1	48	2，793，755	3，972	67，563	${ }^{1.113}$	75，165	26.90	32．6\％	18，926	25．6\％	1.42	5．6\％		
2019．2	42	2，846，920	4，804	86，943	1.113	96,726	33.98	24．5\％	20，134	14．0\％	1.69	9．2\％	30.47	
2020.1	36	2，828，915	4，194	77，159	1.135	87，556	30.95	15．0\％	20，875	10．3\％	1.48	4．3\％		
2020.2	30	2，872，513	4，704	101，275	${ }^{1.135}$	114，922	40.01	17．8\％	24，430	21．3\％	1.64	－3．0\％	35.51	
2021.1	24	2，828，625	4，554	101，765	${ }^{1.136}$	115，561	40.85	32．0\％	25，377	21．6\％	1.61	8．6\％		
2021.2	${ }_{18}^{18}$	2，872，570	6，892	184，769	${ }^{1.1 .136}$	${ }^{209,818}$	73.04	82．6\％	30，445	24．6\％	${ }^{2} .40$	46．5\％	57.07	
2022.1	12	2，830，490	7，452	213，116	1.117	238，090	84.12	105．\％	31，949	25．9\％	2.63	63．5\％		
2022.2	6	2，889，529	9，633	300，546	1.117	335，765	116.20	59．1\％	34，856	14．5\％	3.33	39．0\％	100.32	
Total		103，103，64	223，889	2，648，004		2，921，339								
Ultimate Loss Cost					Ultimate Severity					Ultimate Freq．per 1000				
140.00					40，000					6.00				
120.00					35，00					500				
100.00					30，000									
宮80．00														
鱼 60.00					${ }_{\text {¢ }}^{\text {己 }}$									
					Accident Semester									

Financial Services Regulatory Authority of Ontario
\qquad
Private Passengers Vehicles (Excluding Farmers)
Loss Cost summary
Data as of $12 / 31 / 22$

Financial Services Regulatory Authority of Ontario
Specified Perils
Private Passengers Vehicles (Excluding Farmers)
Loss Cost summary
Data as of $12 / 31 / 22$

(1)	(2)	$\underset{\text { Exhibit }}{(3)}$	$\text { Exxhbitit } 3 \text { GISA }_{(4)}$	${ }_{\text {Exxibitit CISA }}^{(5)}$	(6)	${ }_{\left.(5)^{*}\right)^{(6)}}$	$\begin{gathered} (8) \\ (7)(13)+1000 \end{gathered}$	(9)	$\begin{gathered} (10) \\ (7) /(4)^{*} \times 1000 \end{gathered}$	(11)	$\begin{gathered} (12) \\ (44)(3)^{*}+1000 \end{gathered}$	(13)	(14)	(15)
Accident Semester	Maturity (in Months)	Earned Car Years	Ultimate Claim Counts	Ultimate Claims and ALAE (000)	$\begin{gathered} \text { ULAE } \\ \text { Adjustment } \end{gathered}$	Ultimate Losses \& LAE (000)	Ultimate Loss Cost	$\begin{gathered} \text { \% Change } \\ \text { Seasonal } \\ \text { Accident Half } \\ \text { Years } \end{gathered}$	Ultimate Severity	$\begin{gathered} \text { \% Change } \\ \text { Seasonal } \\ \text { Accident Half } \\ \text { Years } \end{gathered}$	Ultimate Freq. per 1000	$\begin{gathered} \text { \% Change } \\ \text { Seasonal } \\ \text { Accident Half } \\ \text { Years } \end{gathered}$	$\underset{\&}{\text { Annual Loss Cost }}$	$\begin{gathered} \text { \% Change } \\ \text { Accident Years } \end{gathered}$
2003.1	240	9,000	74	384	1.084	417	46.30		5,631		8.22			
2003.2	234	8,887	78	408	1.084	442	50.06		5,664		8.84		48.16	
2004.1	${ }^{228}$	${ }^{9,626}$	72	308	1.100	339	35.22	-23.9\%	4,709	-16.4\%	7.48	-9.0\%		
2004.2	222	9,347	86	398	1.100	438	46.81	-6.5\%	5,087	-10.2\%	9.20	4.1\%	40.93	-15.0
2005.1	216	9,348	6^{63}	${ }^{44}$	1.092	484	51.76	47.0\%	7,680	63.1\%	6.74	-9.9\%		
2005.2	210	9,378	68	301	1.092	329	35.04	-25.1\%	4,833	-5.0\%	7.25	-21.2\%	43.39	
2006.1	204	9,564	60	194	1.082	210	22.01	-57.5\%	3,507	-54.3\%	6.27	-6.9\%		
2006.2	198	9,070	76	349	1.082	378	41.65	18.9\%	4,970	2.8\%	8.38	15.6\%	31.57	
2007.1	192	8,768	69	313	1.085	340	38.77	76.2\%	4,926	40.5\%	7.87	25.4\%		
2007.2	186	8,774	67	397	1.085	431	49.09	17.9\%	6,429	29.4\%	7.64	-8.9\%	43.93	
2008.1	180	8,846	61	273	1.076	294	33.22	-14.3\%	4,818	-2.2\%	6.90	-12.4\%		
2008.2	174	9,179	64	254	1.076	273	29.77	-39.4\%	4,270	-33.6\%	6.97	-8.7\%	31.46	
2009.1	168	9,520	66	301	1.075	323	33.96	2.2\%	4,898	1.7\%	6.93	0.5\%		
2009.2	162	9,842	${ }^{43}$	153	1.075	164	16.71	-43.9\%	3,826	-10.4\%	4.37	-37.3\%	25.19	-19.9\%
2010.1	156	9,913	49	216	1.066	230	23.19	-31.7\%	4,692	-4.2\%	4.94	-28.7\%		
2010.2	150	9,596	${ }^{43}$	180	1.066	192	19.99	19.6\%	4,461	16.5\%	4.48	2.6\%	21.62	
2011.1	144	8,723	50	217	1.083	235	26.93	16.1\%	4,697	0.1\%	5.73	16.0\%		
2011.2	138	7,485	36	152	1.083	165	22.06	10.4\%	4,587	2.8\%	4.81	7.3\%	24.68	
2012.1	132	${ }_{6,866}$	14	55	1.080	59	8.63	-67.9\%	4,234	-9.9\%	2.04	-64.4\%		
2012.2	126	6,074	21	152	1.080	164	26.98	22.3\%	7,804	70.1\%	3.46	-28.1\%	17.25	
2013.1	120	5,591	16	78	1.080	85	15.15	75.4\%	5,293	25.\%	2.86	40.3\%		
2013.2	114	4,902	22	127	1.080	138	28.05	4.0\%	6,251	-19.9\%	4.49	29.8\%	21.18	
2014.1	108	4,561	14	142	1.085	154	33.86	123.6\%	11,031	108.4\%	3.07	7.3\%		
2014.2	102	4,105	17	109	1.085	118	28.86	2.9\%	6,968	11.5\%	4.14	-7.7\%	31.49	
2015.1	96	3,868	12	38	1.104	42	10.97	-67.6\%	3,535	-68.0\%	3.10	1.1\%		
2015.2	90	3,438	16	50	1.104	55	16.02	-44.5\%	3,443	-50.6\%	4.65	12.4\%	13.34	57.68
2016.1	84	3,160	10	60	1.099	66	20.73	89.\%	6,550	85.3\%	3.16	2.0\%		
2016.2	78	2,913	8	55	1.099	61	20.90	30.5\%	7,611	121.1\%	2.75	-41.0\%	20.81	55.9
2017.1	72	2,689	10	45	1.099	50	18.47	-10.9\%	4,966	-24.2\%	3.72	17.5\%		
2017.2	66	2,456	19	131	1.099	144	58.52	180.\%	7,565	-0.6\%	7.74	181.7\%	37.59	
2018.1	60	2,240	10	29	1.104	33	14.53	-21.3\%	3,256	-34.4\%	4.46	20.0\%		
2018.2	54	2,099	8	37	1.104	41	19.66	-66.4\%	5,156	-31.8\%	3.81	-50.7\%	17.01	54.70
2019.1	48	1,950	10	68	1.113	76	38.93	167.9\%	7,593	133.2\%	5.13	14.9\%		
2019.2	42	1,850	14	99	1.113	110	59.23	201.3\%	7,828	51.8\%	7.57	98.5\%	48.82	
2020.1	36	1,778	6	60	1.135	68	38.14	-2.0\%	11,304	48.9\%	3.37	-34.2\%		
2020.2	30	2,130	17	108	1.135	122	57.37	-3.2\%	7,188	-8.2\%	7.98	5.5\%	48.62	
2021.1	24	2,907	16	237	${ }^{1.136}$	269	92.47	142.4\%	16,801	48.6\%	5.50	63.1\%		
2021.2	18	3,700	62	653	${ }^{1.136}$	741	200.39	249.3\%	12,003	67.0\%	16.70	109.2\%	152.91	
2022.1	12	${ }^{3,393}$	${ }_{32}$	379	${ }_{1}^{1.1117}$	${ }_{524}^{424}$	${ }^{124.83}$	35.0\%	9,215	-45.2\%	13.55 1059	146.1\%		
2022.2	6	2,996	32	465	1.117	519	177.35	-13.5\%	16,370	36.4\%	10.59	-36.6\%	147.58	
Total		240,472	1,52	8,420		9,221								

Financial Services Regulatory Authority of Ontario
Uninsured Auto
Private Passengers Vehicles (Excluding Farmers)
Loss Cost summary
Data as of $12 / 31 / 22$

${ }^{(1)}$	(2)	$\underset{\text { Exxibity }}{(3)}$	Exxibit GISA	$\stackrel{(5)}{\text { Exxibit 2cisA }}$	(6)	$\stackrel{(7)}{(5)}{ }_{(5)}{ }^{(6)}$	$\begin{gathered} (8) \\ (7) /(3))^{*} 1000 \end{gathered}$	(9)	$\begin{gathered} (10) \\ (7) /(4)^{*} 1000 \end{gathered}$	(11)	$\begin{aligned} & (12) \\ & (44)(3)^{*}+1000 \end{aligned}$	(13)	(14)	(15)
Accident Semester	Maturity (in Months)	Earned Car Years	Ultimate Claim Counts	Ultimate Claims and ALAE (000)	ULiustment A.	Ultimate Losses \& LAE (000)	Ultimate Loss Cost	$\begin{gathered} \text { \% Change } \\ \text { Seasonal } \\ \text { Accident Half } \end{gathered}$	Ultimate Severity	$\begin{gathered} \text { \% Change } \\ \text { Seasonal } \\ \text { Accident Half } \end{gathered}$	Ultimate Freq per 1000	$\begin{gathered} \% \text { Change } \\ \text { Seasonal } \\ \text { Accionent lalf } \\ \text { rears } \end{gathered}$	$\underset{\&}{\text { Annual Loss Cost }}$	$\begin{gathered} \text { \% Change } \\ \text { Accident Years } \end{gathered}$
2003.1	240	2,893,532	1,153	29,726	1.084	32,223	11.14		27,947		0.40			
2003.2	234	2,980,517	1,244	36,290	1.084	39,339	13.20		31,623		0.42		2.18	
2004.1	228	2,926,763	1,136	31,018	1.100	34,120	11.66	4.7\%	30,035	7.5\%	0.39	-2.6\%		
2004.2	222	3,005,958	1,324	36,579	1.100	40,237	13.39	1.4\%	30,390	-3.9\%	0.44	5.5\%	12.5	2.98
2005.1	216	2,967,180	1,229	29,931	1.092	32,684	11.02	-5.5\%	26,594	-11.5\%	0.41	6.7\%		
2005.2	210	3,081,801	1,366	34,132	1.092	37,272	12.09	-9.6\%	27,285	-10.2\%	0.44	0.6\%	11.56	-7.7\%
2006.1	204	3,037,809	1,230	29,285	1.082	31,687	10.43	-5.3\%	25,762	${ }^{-3.1 \%}$	0.40	-2.2\%		
2006.2	198	3,139,912	1,233	44,557	1.082	48,210	15.35	27.0\%	39,100	43.3\%	0.39	-11.4\%	12.93	11.8\%
2007.1	192	3,088,104	1,153	35,582	1.085	38,606	12.50	19.9\%	33,483	30.0\%	0.37	-7.8\%		
2007.2	186	3,201,986	1,263	42,540	1.085	46,156	14.41	-6.1\%	36,545	-6.5\%	0.39	0.4\%	13.48	4.2\%
2008.1	180	3,179,948	1,082	41,847	1.076	45,028	14.16	13.3\%	41,615	24.3\%	0.34	-8.9\%		
2008.2	174	3,267,042	1,060	52,249	1.076	56,220	17.21	19.4\%	53,038	45.1\%	0.32	-17.7\%	15.70	16.5\%
2009.1	168	3,197,695	966	43,352	1.075	46,603	14.57	2.9\%	48,244	15.9\%	0.30	-11.2\%		
2009.2	162	3,292,892	1,120	56,091	1.075	60,298	18.31	6.4\%	53,838	1.5\%	0.34	4.8\%	16.47	4.9\%
2010.1	156	3,227,446	934	47,932	1.066	51,095	15.83	8.6\%	54,706	13.4\%	0.29	-4.2\%		
2010.2	150	3,332,947	1,093	53,665	1.066	57,207	17.16	-6.3\%	52,340	-2.8\%	0.33	-3.6\%	16.51	0.2\%
2011.1	144	3,270,337	922	45,585	1.083	49,369	15.10	-4.6\%	53,545	-2.1\%	0.28	-2.6\%		
2011.2	138	3,373,440	939	48,954	1.083	53,017	15.72	-8.4\%	56,461	7.9\%	0.28	-15.1\%	15.41	-6.6\%
2012.1	132	3,332,061	861	31,759	1.080	34,287	10.29	-31.\%	39,822	-25.6\%	0.26	-8.3\%		
2012.2	126	3,426,801	925	35,335	1.080	38,148	11.13	-29.2\%	41,241	-27.0\%	0.27	-3.0\%	10.72	30.5\%
2013.1	120	3,369,560	769	32,765	1.080	35,373	10.50	2.0\%	45,998	15.5\%	0.23	-11.7\%		
2013.2	114	3,483,602	818	40,455	1.080	43,675	12.54	12.6\%	53,393	29.5\%	0.23	-13.0\%	11.53	7.6\%
2014.1	108	3,416,716	749	33,007	1.085	35,822	10.48	-0.1\%	47,827	4.0\%	0.22	-3.9\%		
2014.2	102	3,537,518	789	39,582	1.085	42,958	12.14	-3.1\%	54,467	2.0\%	0.22	-5.1\%	11.33	-1.8\%
2015.1	96	3,482,610	755	30,682	1.104	33,864	9.72	-7.3\%	44,875	-6.2\%	0.22	-1.2\%		
2015.2	90	3,611,134	704	33,365	1.104	36,825	10.20	-16.0\%	52,298	-4.0\%	0.19	-12.5\%	9.96	12.0
2016.1	84	3,579,203	730	32,968	1.099	36,245	10.13	4.1\%	49,631	10.6\%	0.20	-5.8\%		
2016.2	78	3,708,735	775	38,436	1.099	42,257	11.39	11.7\%	54,993	4.2\%	0.21	7.2\%	10.77	8.1\%
2017.1	72	3,667,116	709	28,776	1.099	31,625	8.62	-14.8\%	44,576	-10.2\%	0.19	-5.2\%		
2017.2	66	3,815,929	808	38,448	1.099	42,254	11.07	-2.8\%	52,298	-4.0\%	0.21	1.3\%	9.87	8.3\%
2018.1	60	3,763,246	721	35,027	1.104	38,687	10.28	19.2\%	53,685	20.4\%	0.19	-1.0\%		
2018.2	54	3,901,510	752	37,362	1.104	41,266	10.58	-4.5\%	54,860	4.9\%	0.19	-8.9\%	10.43	5.7\%
2019.1	48	3,850,354	679	33,859	1.113	37,669	9.78	-4.8\%	55,504	3.4\%	0.18	-8.0\%		
2019.2	${ }^{42}$	3,970,883	784	${ }^{31,187}$	1.113	34,696	8.74	-17.4\%	44,282	-19.3\%	0.20	2.3\%	9.25	-11.3\%
2020.1	36	3,874,042	533	23,599	1.135	26,779	6.91	-29.3\%	50,252	-9.5\%	0.14	22.0\%		
2020.2	30	3,967,721	644	36,056	1.135	40,914	10.31	18.0\%	63,524	43.5\%	0.16	-17.7\%	8.63	-6.7\%
2021.1	24	3,908,961	581	22,457	1.136	25,502	6.52	-5.6\%	43,926	-12.6\%	0.15	8.0\%		
2021.2	18	4,034,610	813	39,502	1.136	44,857	11.12	7.8\%	55,141	-13.\%	0.20	24.2\%	8.86	2.6%
2022.1	12	3,965,622	894	37,248	1.117	41,613	10.49	60.8\%	46,559	6.0\%	0.23	51.7\%		
2022.2	6	4,088,653	1,004	41,134	1.117	45,954	11.24	1.1\%	45,792	-17.\%	0.25	21.7\%	10.87	22.7\%
Total		138,221,896	37,243	1,492,324		1,630,640								

Ultimate Loss Cost			Ultimate Severity		Ultimate Freq. per 10
		70,000		0.50	
				0.45	
				0.40	
		50,000	MWVV	0.35	
		20,000	N N		
		¢ّ 30,000	MW	发 0.20	/
		20,000		0.10	
		10,000		0.10 0.05	
				0.00	

Financial Services Regulatory Authority of Ontario
Underinsured Motorist
Untion of Ontario
Private Passengers Vehicles (Excluding Farmers)
Loss Cost Summary
Data as of $12 / 31 / 22$

Appendix C. Ultimate Claims and ALAE Exhibits

Financial Services Regulatory Authority of Ontario
Third Party Liability - Bodily Injury
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claims and ALAE Estimate
Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4) (5)		(6) (4) * (5)	(7) Prior Report	(8)
	Reported Incurred Claims and ALAE: Development Factors						
Accident Semester	Maturity (in Months)	Paid Claims and ALAE (000)	Reported Incurred Claims and ALAE (000)	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claims and ALAE Estimate	Prior	Difference
2003.1	240	633,650	633,651	1.000	633,651	633,651	(1)
2003.2	234	645,146	645,153	1.000	645,153	645,146	7
2004.1	228	550,546	550,546	1.000	550,546	550,550	(4)
2004.2	222	647,339	648,045	1.000	648,045	648,108	(63)
2005.1	216	564,295	564,672	1.000	564,672	564,683	(11)
2005.2	210	687,410	689,165	1.000	689,165	689,841	(676)
2006.1	204	615,203	617,645	1.000	617,645	618,019	(373)
2006.2	198	783,271	785,341	1.000	785,341	785,338	3
2007.1	192	700,758	701,154	1.000	701,154	701,150	4
2007.2	186	810,345	814,029	1.000	814,029	813,898	131
2008.1	180	674,822	677,443	1.000	677,443	678,278	(835)
2008.2	174	820,187	823,894	1.000	823,894	823,552	342
2009.1	168	765,015	766,863	1.000	766,863	766,500	363
2009.2	162	972,538	976,665	1.000	976,665	976,139	526
2010.1	156	863,026	867,011	1.000	867,011	866,869	142
2010.2	150	935,849	939,428	1.000	939,246	941,682	$(2,436)$
2011.1	144	727,715	731,383	1.000	731,118	732,471	$(1,353)$
2011.2	138	845,741	862,174	1.000	862,014	862,867	(854)
2012.1	132	734,231	742,037	1.000	741,790	742,707	(918)
2012.2	126	856,307	877,564	1.000	877,267	877,455	(189)
2013.1	120	726,760	752,797	1.000	752,536	755,033	$(2,497)$
2013.2	114	880,595	921,858	1.000	921,694	923,305	$(1,611)$
2014.1	108	717,434	770,485	1.000	770,828	773,199	$(2,370)$
2014.2	102	829,320	894,089	1.000	894,174	895,909	$(1,736)$
2015.1	96	730,345	813,378	1.000	813,758	809,823	3,935
2015.2	90	887,944	1,011,083	1.002	1,012,892	1,008,342	4,549
2016.1	84	691,583	816,821	1.002	818,548	819,070	(522)
2016.2	78	841,545	1,044,979	1.003	1,048,495	1,048,475	20
2017.1	72	558,891	772,877	1.007	778,238	776,384	1,854
2017.2	66	671,394	1,008,582	1.012	1,020,419	1,003,441	16,978
2018.1	60	468,554	781,230	1.020	796,617	798,633	$(2,015)$
2018.2	54	494,240	921,263	1.036	954,426	941,701	12,725
2019.1	48	300,391	719,454	1.071	770,243	754,238	16,004
2019.2	42	298,195	850,548	1.119	951,804	951,427	378
2020.1	36	121,450	470,570	1.184	557,094	546,331	10,763
2020.2	30	95,041	501,231	1.302	652,848	664,702	$(11,854)$
2021.1	24	36,056	291,922	1.621	473,190	481,011	$(7,820)$
2021.2	18	26,316	426,819	1.647	702,803	702,039	764
2022.1	12	6,440	268,563	1.955	524,955	483,640	41,315
2022.2	6	1,380	246,388	3.513	865,556		
Total		24,217,270	29,198,801		30,993,830	30,055,610	72,665

Financial Services Regulatory Authority of Ontario
Third Party Liability - Property Damage Only
Private Passengers Vehicles (Excluding Farmers) Private Passengers Vehicles (Excluding Farmers)

Selected Ultimate Claims and ALAE Estimate
Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4) (5)		(6) (4) * (5)	$\begin{gathered} \text { (7) } \\ \text { Prior Report } \end{gathered}$	(8)
	Reported Incurred Claims and ALAE: Development Factors						
Accident Semester	Maturity (in Months)	Paid Claims and ALAE (000)	Reported Incurred Claims and ALAE (000)	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claims and ALAE Estimate	Prior	Difference
2003.1	240	16,407	16,407	1.000	16,407	16,407	0
2003.2	234	15,575	15,776	1.000	15,776	15,776	(0)
2004.1	228	18,003	18,003	1.000	18,003	18,003	0
2004.2	222	16,862	16,862	1.000	16,862	16,862	0
2005.1	216	17,396	17,396	1.000	17,396	17,396	0
2005.2	210	19,267	19,267	1.000	19,267	19,267	0
2006.1	204	19,000	19,000	1.000	19,000	19,000	0
2006.2	198	21,303	21,303	1.000	21,303	21,303	0
2007.1	192	21,024	21,024	1.000	21,024	21,024	0
2007.2	186	21,953	21,953	1.000	21,953	21,953	0
2008.1	180	19,038	19,038	1.000	19,038	19,038	(0)
2008.2	174	22,464	22,464	1.000	22,464	22,464	(0)
2009.1	168	21,428	21,430	1.000	21,430	21,433	(3)
2009.2	162	21,203	21,206	1.000	21,206	21,198	8
2010.1	156	21,028	21,028	1.000	21,028	21,028	(0)
2010.2	150	23,055	23,055	1.000	23,055	23,055	0
2011.1	144	22,080	22,080	1.000	22,080	22,080	0
2011.2	138	23,452	23,452	1.000	23,452	23,452	0
2012.1	132	22,855	22,855	1.000	22,855	22,855	0
2012.2	126	24,038	24,038	1.000	24,038	24,038	0
2013.1	120	23,378	23,387	1.000	23,387	23,387	0
2013.2	114	28,135	28,135	1.000	28,135	28,129	6
2014.1	108	23,307	23,309	1.000	23,309	23,311	(2)
2014.2	102	28,619	28,658	1.000	28,658	28,660	(2)
2015.1	96	27,055	28,067	1.000	28,067	27,671	396
2015.2	90	29,967	30,092	1.000	30,092	30,098	(5)
2016.1	84	29,547	29,818	1.000	29,818	29,819	(1)
2016.2	78	32,191	32,433	1.000	32,433	32,495	(62)
2017.1	72	27,810	28,138	1.000	28,138	28,159	(22)
2017.2	66	34,968	35,180	1.000	35,180	35,167	13
2018.1	60	33,230	33,611	1.000	33,611	33,530	81
2018.2	54	36,429	36,957	1.000	36,957	36,864	92
2019.1	48	33,826	34,700	1.000	34,700	35,110	(410)
2019.2	42	39,886	44,022	1.002	44,119	43,994	125
2020.1	36	24,431	25,454	1.008	25,660	25,733	(73)
2020.2	30	28,644	31,150	1.030	32,070	30,151	1,918
2021.1	24	18,448	22,430	1.079	24,211	25,145	(934)
2021.2	18	20,546	26,205	1.188	31,127	33,100	$(1,973)$
2022.1	12	14,630	23,169	1.443	33,441	42,104	$(8,663)$
2022.2	6	4,747	25,532	2.034	51,920		
Total		947,227	998,085		1,042,671	1,000,261	$(9,510)$

Financial Services Regulatory Authority of Ontario
Third Party Liability - Direct Compensation Private Passengers Vehicles (Excluding Farmers)

Selected Ultimate Claims and ALAE Estimate
Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4) (5)		$\begin{gathered} (6) \\ (4) *(5) \end{gathered}$	$\begin{gathered} \text { (7) } \\ \text { Prior Report } \end{gathered}$	(8)
	Reported Incurred Claims and ALAE: Development Factors						
Accident Semester	Maturity (in Months)	Paid Claims and ALAE (000)	Reported Incurred Claims and ALAE (000)	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claims and ALAE Estimate	Prior	Difference
2003.1	240	408,842	408,842	1.000	408,842	408,844	(1)
2003.2	234	379,774	379,774	1.000	379,774	379,774	(0)
2004.1	228	351,947	351,947	1.000	351,947	351,948	(0)
2004.2	222	365,687	365,687	1.000	365,687	365,688	(0)
2005.1	216	348,924	348,924	1.000	348,924	348,924	(0)
2005.2	210	389,583	389,583	1.000	389,583	389,585	(2)
2006.1	204	346,116	346,116	1.000	346,116	346,117	(1)
2006.2	198	401,306	401,306	1.000	401,306	401,308	(2)
2007.1	192	399,347	399,347	1.000	399,347	399,350	(3)
2007.2	186	425,998	425,998	1.000	425,998	425,999	(1)
2008.1	180	409,611	409,611	1.000	409,611	409,612	(0)
2008.2	174	435,710	435,710	1.000	435,710	435,711	(0)
2009.1	168	404,966	404,966	1.000	404,966	404,967	(1)
2009.2	162	424,603	424,604	1.000	424,604	424,599	5
2010.1	156	401,122	401,122	1.000	401,122	401,127	(5)
2010.2	150	455,150	455,154	1.000	455,154	455,170	(16)
2011.1	144	410,709	410,722	1.000	410,722	410,722	(0)
2011.2	138	432,071	432,084	1.000	432,084	432,085	(1)
2012.1	132	387,680	387,674	1.000	387,674	387,673	1
2012.2	126	443,327	443,339	1.000	443,339	443,307	32
2013.1	120	430,015	430,023	1.000	430,023	430,027	(3)
2013.2	114	509,543	509,560	1.000	509,560	509,556	3
2014.1	108	506,574	506,599	1.000	506,599	506,600	(1)
2014.2	102	514,718	514,739	1.000	514,739	514,735	4
2015.1	96	552,567	552,584	1.000	552,584	552,588	(5)
2015.2	90	585,295	585,323	1.000	585,323	585,333	(10)
2016.1	84	583,820	583,853	1.000	583,853	583,856	(3)
2016.2	78	698,464	698,486	1.000	698,486	698,492	(5)
2017.1	72	647,744	647,773	1.000	647,773	647,828	(55)
2017.2	66	800,843	800,913	1.000	800,913	800,968	(55)
2018.1	60	757,850	757,994	1.000	757,994	757,925	69
2018.2	54	867,759	867,956	1.000	867,956	867,901	55
2019.1	48	846,353	846,602	1.000	846,602	846,852	(250)
2019.2	42	923,599	923,762	1.000	923,762	923,777	(15)
2020.1	36	509,810	510,311	1.000	510,393	510,190	202
2020.2	30	547,525	548,195	1.000	548,427	547,996	432
2021.1	24	414,283	415,116	1.001	415,541	415,628	(87)
2021.2	18	700,831	706,231	1.002	707,762	707,924	(162)
2022.1	12	726,611	748,795	1.006	753,057	697,074	55,984
2022.2	6	561,632	812,173	1.072	870,768		
Total		20,708,307	20,989,501		21,054,628	20,127,757	56,103

Accident Benefits - Total Medical/Rehab Private Passengers Vehicles (Excluding Farmers)

Selected Ultimate Claims and ALAE Estimate

Data as of $12 / 31 / 22$

Accident Benefits - Total Disability Income Private Passengers Vehicles (Excluding Farmers)

Selected Ultimate Claims and ALAE Estimate
Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4) (5)		(6) $\text { (4) } *(5)$	$\begin{gathered} \text { (7) } \\ \text { Prior Report } \end{gathered}$	(8)
	Reported Incurred Claims and ALAE: Development Factors						
Accident Semester	Maturity (in Months)	Paid Claims and ALAE (000)	Reported Incurred Claims and ALAE (000)	GISA Selected Age-to- Ultimate Development Factors	Selected Ultimate Claims and ALAE Estimate	Prior	Difference
2003.1	240	207,938	208,907	1.000	208,907	208,875	33
2003.2	234	201,841	203,361	1.000	203,361	203,258	103
2004.1	228	168,642	170,110	1.000	170,110	169,838	271
2004.2	222	182,743	184,338	1.000	184,338	184,135	203
2005.1	216	168,514	169,593	1.000	169,593	169,582	11
2005.2	210	208,705	210,225	1.000	210,225	209,764	461
2006.1	204	194,167	194,898	1.000	194,839	194,589	250
2006.2	198	232,291	233,232	1.000	233,261	233,295	(35)
2007.1	192	220,770	221,960	1.000	221,927	221,694	233
2007.2	186	247,091	249,945	1.000	249,908	249,323	585
2008.1	180	221,781	223,899	0.999	223,692	223,831	(139)
2008.2	174	270,367	271,537	0.999	271,154	271,300	(146)
2009.1	168	268,764	271,182	1.000	271,105	270,586	519
2009.2	162	346,111	348,833	0.999	348,648	348,606	42
2010.1	156	332,099	334,636	1.000	334,599	333,805	794
2010.2	150	282,756	288,898	0.999	288,656	287,987	669
2011.1	144	199,128	201,393	0.999	201,184	201,455	(271)
2011.2	138	215,441	219,036	0.999	218,723	219,908	$(1,184)$
2012.1	132	190,356	193,264	0.999	193,000	193,378	(378)
2012.2	126	229,430	235,835	0.998	235,324	235,804	(481)
2013.1	120	204,858	210,088	0.999	209,823	208,851	972
2013.2	114	245,831	253,047	0.999	252,885	250,886	1,999
2014.1	108	210,491	219,887	1.000	219,888	219,298	591
2014.2	102	239,882	252,916	0.996	251,912	251,352	560
2015.1	96	216,962	234,682	0.992	232,883	232,161	722
2015.2	90	260,349	286,780	0.988	283,352	282,821	531
2016.1	84	240,576	265,170	0.986	261,478	262,333	(855)
2016.2	78	255,952	290,302	0.983	285,397	286,743	$(1,346)$
2017.1	72	203,890	237,362	0.981	232,812	231,220	1,592
2017.2	66	216,098	264,021	0.980	258,736	262,160	$(3,423)$
2018.1	60	184,558	246,190	0.978	240,654	241,021	(367)
2018.2	54	191,971	268,501	0.986	264,829	269,259	$(4,430)$
2019.1	48	155,279	241,212	1.009	243,352	242,601	750
2019.2	42	156,190	256,193	1.046	267,859	274,262	$(6,403)$
2020.1	36	75,577	135,966	1.112	151,150	156,732	$(5,582)$
2020.2	30	79,757	142,180	1.255	178,503	184,838	$(6,335)$
2021.1	24	45,998	98,127	1.375	134,940	144,785	$(9,845)$
2021.2	18	53,533	148,963	1.436	213,977	211,148	2,829
2022.1	12	27,701	109,531	1.649	180,596	173,158	7,439
2022.2	6	8,647	84,520	3.034	256,421		
Total		7,863,034	8,880,720		9,254,001	9,016,641	$(19,061)$

Financial Services Regulatory Authority of Ontario
Accident Benefits - Funeral \& Death Benefits
Private Passengers Vehicles (Excluding Farmers)

Selected Ultimate Claims and ALAE Estimate
Data as of $12 / 31 / 22$

Financial Services Regulatory Authority of Ontario
Accident Benefits - Quebec Excess
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claims and ALAE Estimate
Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4) (5)		${ }_{(4) *(5)}^{(6)}$	(7) Prior Report	(8)
	Reported Incurred Claims and ALAE: Development Factors						
Accident Semester	Maturity (in Months)	Paid Claims and ALAE (000)	Reported Incurred Claims and ALAE (000)	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claims and ALAE Estimate	Prior	Difference
2003.1	240	430	430	1.000	430	430	0
2003.2	234	14	14	1.000	14	14	0
2004.1	228	179	179	1.000	179	179	0
2004.2	222	80	80	1.000	80	80	0
2005.1	216	2	2	1.000	2	2	0
2005.2	210	152	152	1.000	152	152	0
2006.1	204	0	0	1.000	0	0	0
2006.2	198	36	36	1.000	36	36	0
2007.1	192	45	45	1.000	45	45	0
2007.2	186	154	154	1.000	154	154	0
2008.1	180	86	86	1.000	86	85	1
2008.2	174	182	363	1.000	363	177	186
2009.1	168	215	215	1.000	215	215	0
2009.2	162	249	249	1.000	249	249	0
2010.1	156	38	38	1.000	38	38	0
2010.2	150	7	7	1.000	7	7	0
2011.1	144	64	64	1.000	64	64	0
2011.2	138	31	31	1.000	31	31	0
2012.1	132	12	12	1.000	12	12	0
2012.2	126	24	24	1.000	24	24	0
2013.1	120	0	50	1.000	50	0	50
2013.2	114	23	23	1.000	23	23	0
2014.1	108	1	1	1.000	1	1	0
2014.2	102	840	840	1.000	840	840	0
2015.1	96	65	65	1.000	65	65	0
2015.2	90	41	41	1.000	41	43	(3)
2016.1	84	2	2	1.066	2	2	0
2016.2	78	22	22	1.055	23	25	(2)
2017.1	72	22	22	1.133	25	24	1
2017.2	66	37	37	1.112	41	40	1
2018.1	60	30	30	1.076	33	32	0
2018.2	54	52	52	1.064	55	52	3
2019.1	48	42	42	1.006	42	45	(3)
2019.2	42	15	15	1.109	16	17	(0)
2020.1	36	41	161	1.143	184	36	147
2020.2	30	26	26	1.279	34	35	(1)
2021.1	24	4	4	1.367	5	3	2
2021.2	18	2	2	1.490	4	17	(13)
2022.1	12	0	35	1.435	50	0	50
2022.2	6	3	118	1.557	184		
Total		3,272	3,773		3,903	3,299	419

Financial Services Regulatory Authority of Ontario

Collision
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claims and ALAE Estimate Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4)	(5)	$\begin{gathered} (6) \\ (4) *(5) \end{gathered}$	(7) Prior Report	(8)
			Reported Incurred Claims and ALAE: Development Factors				
	Maturity (in Months)	Paid Claims and ALAE (000)	Reported Incurred Claims and ALAE (000)	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claims and ALAE Estimate	Prior	Difference
2003.1	240	359,479	359,479	1.000	359,479	359,480	(1)
2003.2	234	301,810	301,813	1.000	301,813	301,813	0
2004.1	228	286,031	286,031	1.000	286,031	286,031	(0)
2004.2	222	284,738	284,738	1.000	284,738	284,738	0
2005.1	216	283,783	283,783	1.000	283,783	283,783	0
2005.2	210	308,758	308,758	1.000	308,758	308,758	(1)
2006.1	204	277,935	277,935	1.000	277,935	277,935	0
2006.2	198	310,330	310,330	1.000	310,330	310,330	(0)
2007.1	192	334,626	334,636	1.000	334,636	334,636	0
2007.2	186	333,821	333,822	1.000	333,822	333,812	10
2008.1	180	327,225	327,225	1.000	327,225	327,225	(0)
2008.2	174	341,150	341,150	1.000	341,150	341,151	(1)
2009.1	168	311,854	311,855	1.000	311,855	311,858	(3)
2009.2	162	307,070	307,076	1.000	307,076	307,086	(9)
2010.1	156	294,457	294,462	1.000	294,462	294,462	0
2010.2	150	328,999	329,000	1.000	329,000	328,999	1
2011.1	144	321,651	321,648	1.000	321,648	321,646	2
2011.2	138	322,378	322,379	1.000	322,379	322,379	(0)
2012.1	132	302,096	302,098	1.000	302,098	302,100	(2)
2012.2	126	332,185	332,190	1.000	332,190	332,175	15
2013.1	120	331,104	331,113	1.000	331,113	331,117	(4)
2013.2	114	381,234	381,241	1.000	381,241	381,241	1
2014.1	108	389,066	389,079	1.000	389,079	389,080	(1)
2014.2	102	380,397	380,394	1.000	380,394	380,417	(22)
2015.1	96	410,862	410,914	1.000	410,914	410,931	(17)
2015.2	90	409,710	409,773	1.000	409,773	409,774	(0)
2016.1	84	443,228	443,287	1.000	443,287	443,317	(30)
2016.2	78	508,659	508,689	1.000	508,689	508,717	(27)
2017.1	72	477,699	477,826	1.000	477,826	477,868	(42)
2017.2	66	579,775	579,827	1.000	579,827	579,654	172
2018.1	60	571,239	571,335	1.000	571,335	571,581	(246)
2018.2	54	628,970	628,957	1.000	628,999	628,920	78
2019.1	48	635,504	635,816	1.000	635,905	635,777	128
2019.2	42	671,262	671,311	1.000	671,437	671,269	168
2020.1	36	415,170	415,312	1.000	415,425	415,110	315
2020.2	30	420,649	421,319	1.000	421,478	421,281	197
2021.1	24	317,249	318,912	1.001	319,148	320,225	$(1,076)$
2021.2	18	523,020	529,447	1.001	530,074	533,265	$(3,191)$
2022.1	12	580,788	598,915	1.002	600,355	575,331	25,025
2022.2	6	465,921	680,562	1.031	701,338		
Total		15,811,883	16,054,438		16,078,048	15,355,272	21,437

Financial Services Regulatory Authority of Ontario

Comprehensive - Total
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claims and ALAE Estimate
Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4) (5)		(6) (4) * (5)	(7) Prior Report	(8)
	Reported Incurred Claims and ALAE: Development Factors						
Accident Semester	Maturity (in Months)	Paid Claims and ALAE (000)	Reported Incurred Claims and ALAE (000)	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claims and ALAE Estimate	Prior	Difference
2003.1	240	168,244	168,244	1.000	168,244	168,244	0
2003.2	234	172,266	172,266	1.000	172,266	172,267	(0)
2004.1	228	132,935	132,935	1.000	132,935	132,935	0
2004.2	222	140,537	140,537	1.000	140,537	140,537	0
2005.1	216	121,791	121,791	1.000	121,791	121,792	(0)
2005.2	210	165,203	165,203	1.000	165,203	165,203	0
2006.1	204	124,469	124,469	1.000	124,469	124,469	0
2006.2	198	158,081	158,082	1.000	158,082	158,083	(1)
2007.1	192	136,324	136,324	1.000	136,324	136,324	0
2007.2	186	153,671	153,671	1.000	153,671	153,671	0
2008.1	180	185,651	185,651	1.000	185,651	185,651	0
2008.2	174	147,679	147,680	1.000	147,680	147,681	(1)
2009.1	168	163,400	163,401	1.000	163,401	163,404	(3)
2009.2	162	147,426	147,426	1.000	147,426	147,426	0
2010.1	156	112,496	112,497	1.000	112,497	112,497	(0)
2010.2	150	130,754	130,754	1.000	130,754	130,754	(0)
2011.1	144	152,127	152,127	1.000	152,127	152,127	0
2011.2	138	144,591	144,588	1.000	144,588	144,588	0
2012.1	132	116,127	116,133	1.000	116,133	116,127	6
2012.2	126	176,855	176,852	1.000	176,852	176,853	(1)
2013.1	120	116,688	116,817	1.000	116,817	116,676	141
2013.2	114	188,948	188,952	1.000	188,952	188,954	(2)
2014.1	108	132,994	133,012	1.000	133,012	133,013	(1)
2014.2	102	153,370	153,369	1.000	153,369	153,364	5
2015.1	96	130,710	130,708	1.000	130,708	130,708	(0)
2015.2	90	164,923	164,933	1.000	164,933	164,938	(6)
2016.1	84	151,324	151,341	1.000	151,341	151,346	(5)
2016.2	78	189,917	189,968	1.000	189,968	190,036	(69)
2017.1	72	158,222	158,265	1.000	158,265	158,271	(6)
2017.2	66	197,339	197,485	1.000	197,485	197,270	215
2018.1	60	207,236	207,314	1.000	207,314	207,342	(28)
2018.2	54	246,164	246,299	1.000	246,299	246,375	(76)
2019.1	48	206,704	206,810	1.000	206,810	206,785	25
2019.2	42	251,090	251,342	1.000	251,342	251,539	(196)
2020.1	36	196,519	197,063	1.000	197,063	196,919	145
2020.2	30	259,896	260,850	1.000	260,850	260,906	(56)
2021.1	24	215,022	215,604	1.000	215,604	215,931	(327)
2021.2	18	366,439	369,024	1.000	369,024	371,045	$(2,021)$
2022.1	12	415,172	425,453	1.002	426,321	409,014	17,307
2022.2	6	368,648	466,016	1.073	500,233		
Total		7,267,953	7,381,256		7,416,342	6,901,064	15,045

Financial Services Regulatory Authority of Ontario

Comprehensive - Theft
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claims and ALAE Estimate
Data as of $12 / 31 / 22$

Financial Services Regulatory Authority of Ontario
All Perils
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claims and ALAE Estimate Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4) (5)		(6) (4) * (5)	$\begin{gathered} \text { (7) } \\ \text { Prior Report } \end{gathered}$	(8)
	Reported Incurred Claims and ALAE: Development Factors						
Accident Semester	Maturity (in Months)	Paid Claims and ALAE (000)	Reported Incurred Claims and ALAE (000)	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claims and ALAE Estimate	Prior	Difference
2003.1	240	128,834	128,834	1.000	128,834	128,834	0
2003.2	234	124,555	124,555	1.000	124,555	124,555	0
2004.1	228	112,890	112,890	1.000	112,890	112,890	0
2004.2	222	111,113	111,113	1.000	111,113	111,113	0
2005.1	216	107,165	107,165	1.000	107,165	107,165	0
2005.2	210	122,071	122,071	1.000	122,071	122,071	0
2006.1	204	103,059	103,059	1.000	103,059	103,059	(0)
2006.2	198	117,578	117,578	1.000	117,578	117,578	0
2007.1	192	119,544	119,544	1.000	119,544	119,544	0
2007.2	186	123,464	123,464	1.000	123,464	123,464	(0)
2008.1	180	125,851	125,851	1.000	125,851	125,851	0
2008.2	174	125,470	125,470	1.000	125,470	125,471	(1)
2009.1	168	124,312	124,312	1.000	124,312	124,312	(0)
2009.2	162	116,632	116,632	1.000	116,632	116,637	(4)
2010.1	156	103,089	103,089	1.000	103,089	103,090	(1)
2010.2	150	112,398	112,398	1.000	112,398	112,398	0
2011.1	144	111,651	111,651	1.000	111,651	111,652	(1)
2011.2	138	114,447	114,447	1.000	114,447	114,447	0
2012.1	132	100,272	100,272	1.000	100,272	100,272	0
2012.2	126	124,585	124,594	1.000	124,594	124,607	(13)
2013.1	120	112,991	113,043	1.000	113,043	113,042	0
2013.2	114	150,479	150,485	1.000	150,485	150,487	(1)
2014.1	108	138,809	138,830	1.000	138,830	138,830	0
2014.2	102	149,618	149,627	1.000	149,627	149,649	(22)
2015.1	96	148,098	148,118	1.000	148,118	148,164	(46)
2015.2	90	159,475	159,513	1.000	159,513	159,513	(1)
2016.1	84	164,832	164,903	1.000	164,903	164,910	(7)
2016.2	78	210,468	210,575	1.000	210,575	210,611	(36)
2017.1	72	201,258	201,295	1.000	201,295	201,401	(106)
2017.2	66	260,141	260,176	1.000	260,176	260,267	(90)
2018.1	60	274,510	274,698	1.000	274,698	274,760	(62)
2018.2	54	305,072	305,148	1.000	305,148	305,353	(205)
2019.1	48	292,750	292,861	1.000	292,861	292,860	1
2019.2	42	325,728	326,016	1.000	326,016	326,171	(155)
2020.1	36	214,621	214,859	1.000	214,859	215,141	(282)
2020.2	30	241,887	242,462	1.000	242,462	242,598	(136)
2021.1	24	202,332	203,263	1.000	203,263	203,862	(600)
2021.2	18	340,092	343,386	0.999	342,994	343,981	(987)
2022.1	12	381,662	396,268	0.997	394,931	370,468	24,463
2022.2	6	316,162	459,445	1.039	477,518		
Total		6,919,965	7,083,960		7,100,303	6,601,077	21,709

Financial Services Regulatory Authority of Ontario

Specified Perils
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claims and ALAE Estimate Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4) (5)		$\stackrel{(6)}{(4)^{*}(5)}$	(7) Prior Report	(8)
	Reported Incurred Claims and ALAE: Development Factors						
Accident Semester	Maturity (in Months)	Paid Claims and ALAE (000)	Reported Incurred Claims and ALAE (000)	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claims and ALAE Estimate	Prior	Difference
2003.1	240	384	384	1.000	384	384	0
2003.2	234	408	408	1.000	408	408	0
2004.1	228	308	308	1.000	308	308	0
2004.2	222	398	398	1.000	398	398	0
2005.1	216	443	443	1.000	443	443	0
2005.2	210	301	301	1.000	301	301	0
2006.1	204	194	194	1.000	194	194	0
2006.2	198	349	349	1.000	349	349	0
2007.1	192	313	313	1.000	313	313	0
2007.2	186	397	397	1.000	397	397	0
2008.1	180	273	273	1.000	273	273	0
2008.2	174	254	254	1.000	254	254	0
2009.1	168	301	301	1.000	301	301	0
2009.2	162	153	153	1.000	153	153	0
2010.1	156	216	216	1.000	216	216	0
2010.2	150	180	180	1.000	180	180	0
2011.1	144	217	217	1.000	217	217	0
2011.2	138	152	152	1.000	152	152	0
2012.1	132	55	55	1.000	55	55	0
2012.2	126	152	152	1.000	152	152	0
2013.1	120	78	78	1.000	78	78	0
2013.2	114	127	127	1.000	127	127	0
2014.1	108	142	142	1.000	142	142	0
2014.2	102	109	109	1.000	109	109	0
2015.1	96	38	38	1.000	38	38	0
2015.2	90	50	50	1.000	50	50	0
2016.1	84	60	60	1.000	60	60	0
2016.2	78	55	55	1.000	55	55	0
2017.1	72	45	45	1.000	45	45	0
2017.2	66	131	131	1.000	131	131	0
2018.1	60	29	29	1.000	29	29	0
2018.2	54	37	37	1.000	37	37	0
2019.1	48	68	68	1.000	68	68	0
2019.2	42	99	99	1.000	99	99	0
2020.1	36	39	60	1.000	60	60	(0)
2020.2	30	108	108	1.000	108	109	(1)
2021.1	24	235	235	1.009	237	238	(1)
2021.2	18	640	645	1.013	653	663	(10)
2022.1	12	333	371	1.021	379	363	16
2022.2	6	361	430	1.081	465		
Total		8,233	8,367		8,420	7,951	4

Financial Services Regulatory Authority of Ontario
Uninsured Auto
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claims and ALAE Estimate
Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4) (5)		$\begin{gathered} (6) \\ (4) *(5) \end{gathered}$	(7) Prior Report	(8)
			Reported Incurred Claims and ALAE: Development Factors				
	Maturity (in Months)	Paid Claims and ALAE (000)	Reported Incurred Claims and ALAE (000)	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claims and ALAE Estimate	Prior	Difference
2003.1	240	29,726	29,726	1.000	29,726	29,726	0
2003.2	234	36,290	36,290	1.000	36,290	36,292	(2)
2004.1	228	31,018	31,018	1.000	31,018	31,023	(5)
2004.2	222	36,577	36,579	1.000	36,579	36,578	1
2005.1	216	29,931	29,931	1.000	29,931	29,932	(1)
2005.2	210	34,132	34,132	1.000	34,132	34,139	(7)
2006.1	204	29,287	29,285	1.000	29,285	29,280	6
2006.2	198	44,550	44,557	1.000	44,557	44,553	3
2007.1	192	35,581	35,582	1.000	35,582	35,561	21
2007.2	186	42,000	42,540	1.000	42,540	42,472	68
2008.1	180	41,269	41,847	1.000	41,847	41,840	8
2008.2	174	52,241	52,249	1.000	52,249	52,243	6
2009.1	168	43,296	43,352	1.000	43,352	43,459	(107)
2009.2	162	56,084	56,091	1.000	56,091	56,024	67
2010.1	156	47,841	47,932	1.000	47,932	47,885	47
2010.2	150	53,484	53,726	0.999	53,665	53,653	12
2011.1	144	45,547	45,662	0.998	45,585	45,520	65
2011.2	138	49,065	49,123	0.997	48,954	48,926	27
2012.1	132	31,152	31,926	0.995	31,759	31,388	370
2012.2	126	34,883	35,665	0.991	35,335	35,329	6
2013.1	120	32,356	33,112	0.990	32,765	32,865	(100)
2013.2	114	38,959	41,029	0.986	40,455	40,765	(310)
2014.1	108	31,320	33,744	0.978	33,007	32,516	491
2014.2	102	36,576	40,388	0.980	39,582	39,466	116
2015.1	96	27,784	31,374	0.978	30,682	31,063	(381)
2015.2	90	27,835	34,560	0.965	33,365	33,848	(483)
2016.1	84	28,082	34,576	0.953	32,968	31,895	1,073
2016.2	78	29,441	40,436	0.951	38,436	37,739	697
2017.1	72	20,046	30,493	0.944	28,776	28,762	14
2017.2	66	22,640	41,267	0.932	38,448	37,329	1,119
2018.1	60	16,540	38,256	0.916	35,027	32,638	2,389
2018.2	54	16,698	41,037	0.910	37,362	36,657	705
2019.1	48	14,873	38,052	0.890	33,859	33,037	822
2019.2	42	10,419	34,372	0.907	31,187	29,996	1,191
2020.1	36	6,238	25,853	0.913	23,599	25,125	$(1,526)$
2020.2	30	10,710	36,288	0.994	36,056	35,830	225
2021.1	24	4,591	16,836	1.334	22,457	23,068	(610)
2021.2	18	5,543	23,523	1.679	39,502	39,262	240
2022.1	12	5,908	17,257	2.158	37,248	34,735	2,513
2022.2	6	4,637	11,875	3.464	41,134		
Total		1,195,149	1,451,542		1,492,324	1,442,422	8,768

Financial Services Regulatory Authority of Ontario

Underinsured Motorist
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claims and ALAE Estimate Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4) (5)		$\begin{gathered} (6) \\ (4) *(5) \end{gathered}$	(7) Prior Report	(8)
	Reported Incurred Claims and ALAE: Development Factors						
Accident Semester	Maturity (in Months)	Paid Claims and ALAE (000)	Reported Incurred Claims and ALAE (000)	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claims and ALAE Estimate	Prior	Difference
2003.1	240	13,170	13,170	1.000	13,170	13,170	0
2003.2	234	14,105	14,105	1.000	14,105	14,105	0
2004.1	228	14,002	14,002	1.000	14,002	14,002	0
2004.2	222	19,215	19,257	1.000	19,257	19,217	40
2005.1	216	19,043	19,043	1.000	19,043	19,044	(1)
2005.2	210	17,405	17,405	1.000	17,405	17,405	0
2006.1	204	14,078	14,078	1.000	14,078	14,078	0
2006.2	198	25,201	25,201	1.000	25,201	25,201	0
2007.1	192	18,715	18,715	1.000	18,715	18,715	0
2007.2	186	25,141	25,141	1.000	25,141	25,140	1
2008.1	180	18,567	19,013	1.000	19,013	18,804	208
2008.2	174	21,589	21,628	1.001	21,647	21,592	56
2009.1	168	14,941	15,099	1.000	15,096	15,093	3
2009.2	162	27,843	29,048	1.001	29,067	29,079	(11)
2010.1	156	18,881	18,888	1.002	18,935	18,921	14
2010.2	150	20,697	23,059	1.003	23,134	22,831	302
2011.1	144	21,837	22,108	0.998	22,073	22,047	26
2011.2	138	20,480	20,665	0.996	20,572	21,018	(447)
2012.1	132	15,266	15,962	0.995	15,876	15,681	195
2012.2	126	14,626	16,290	0.996	16,217	16,264	(47)
2013.1	120	15,088	16,518	0.992	16,383	15,555	828
2013.2	114	17,079	18,728	0.992	18,577	19,919	$(1,342)$
2014.1	108	19,100	20,799	0.981	20,406	20,688	(283)
2014.2	102	10,962	12,937	0.981	12,694	12,790	(96)
2015.1	96	19,354	23,480	0.975	22,890	24,353	$(1,463)$
2015.2	90	15,979	19,668	0.968	19,031	19,509	(478)
2016.1	84	16,703	26,123	0.965	25,209	23,105	2,104
2016.2	78	20,557	32,859	0.968	31,793	30,921	872
2017.1	72	15,554	27,469	0.962	26,423	25,967	456
2017.2	66	14,626	32,836	0.963	31,633	32,698	$(1,065)$
2018.1	60	11,741	28,375	0.960	27,228	25,847	1,381
2018.2	54	9,908	29,438	0.955	28,109	27,055	1,054
2019.1	48	8,103	30,030	0.969	29,100	28,814	286
2019.2	42	4,903	25,588	0.982	25,119	25,804	(685)
2020.1	36	2,005	23,896	0.998	23,840	24,112	(273)
2020.2	30	2,290	24,737	1.081	26,742	24,334	2,408
2021.1	24	672	13,892	1.407	19,550	21,141	$(1,591)$
2021.2	18	1,165	19,671	1.696	33,370	29,915	3,455
2022.1	12	479	10,078	2.142	21,587	34,162	$(12,574)$
2022.2	6	251	9,512	4.031	38,343		
Total		581,320	828,511		879,774	848,098	$(6,668)$

Appendix D. Ultimate Claim Count Exhibits

Financial Services Regulatory Authority of Ontario

Third Party Liability - Bodily Injury

Private Passengers Vehicles (Excluding Farmers)

Selected Ultimate Claim Counts

Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4)$\begin{gathered} (5) \\ (3) *(4) \end{gathered}$		6) Prior Report	(7)
		Reported Claim Counts: Development Factors				
ccident Semester	Maturity (in Months)	Reported Claim Counts	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claim Counts	Prior	Difference
2003.1	240	5,621	1.000	5,621	5,646	(25)
2003.2	234	5,448	1.000	5,448	5,459	(11)
2004.1	228	4,016	1.000	4,016	4,036	(20)
2004.2	222	4,538	1.000	4,538	4,538	0
2005.1	216	3,849	1.000	3,849	3,849	0
2005.2	210	4,623	1.000	4,623	4,624	(1)
2006.1	204	4,361	1.000	4,361	4,361	(1)
2006.2	198	5,139	1.000	5,139	5,139	0
2007.1	192	5,016	1.000	5,016	5,014	2
2007.2	186	5,751	1.000	5,751	5,751	0
2008.1	180	4,949	1.000	4,949	4,948	1
2008.2	174	6,090	1.000	6,090	6,094	(4)
2009.1	168	6,052	1.000	6,052	6,054	(2)
2009.2	162	7,788	1.000	7,788	7,788	0
2010.1	156	7,636	1.000	7,636	7,636	0
2010.2	150	8,076	1.000	8,076	8,076	0
2011.1	144	6,235	1.000	6,235	6,237	(2)
2011.2	138	6,917	1.000	6,917	6,919	(2)
2012.1	132	5,895	1.000	5,895	5,899	(4)
2012.2	126	6,796	1.000	6,796	6,803	(7)
2013.1	120	6,309	1.000	6,309	6,314	(5)
2013.2	114	7,880	0.999	7,871	7,881	(10)
2014.1	108	6,660	0.998	6,644	6,651	(8)
2014.2	102	7,576	0.995	7,541	7,549	(7)
2015.1	96	6,948	0.992	6,894	6,913	(19)
2015.2	90	7,944	0.988	7,847	7,854	(7)
2016.1	84	6,871	0.982	6,749	6,771	(22)
2016.2	78	8,046	0.977	7,858	7,876	(17)
2017.1	72	6,490	0.969	6,290	6,319	(30)
2017.2	66	7,612	0.958	7,293	7,327	(34)
2018.1	60	6,333	0.945	5,986	5,966	20
2018.2	54	7,415	0.931	6,900	6,910	(10)
2019.1	48	6,304	0.915	5,771	5,783	(12)
2019.2	42	7,791	0.898	6,997	7,081	(84)
2020.1	36	4,070	0.883	3,593	3,664	(72)
2020.2	30	5,216	0.883	4,606	4,855	(249)
2021.1	24	3,345	0.993	3,320	3,396	(76)
2021.2	18	4,939	1.030	5,087	5,354	(267)
2022.1	12	4,579	0.934	4,278	4,073	205
2022.2	6	7,075	0.752	5,319		
Total		244,199		237,947	233,408	(780)

Financial Services Regulatory Authority of Ontario
Third Party Liability - Property Damage Only
Private Passengers Vehicles (Excluding Farmers)

Selected Ultimate Claim Counts

Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4)	$\begin{gathered} (5) \\ (3) *(4) \end{gathered}$	(6) Prior Report	(7)
		Reported Claim Counts: Development Factors				
cident Semester	Maturity (in Months)	Reported Claim Counts	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claim Counts	Prior	Difference
2003.1	240	4,711	1.000	4,711	4,798	(87)
2003.2	234	4,504	1.000	4,504	4,514	(10)
2004.1	228	4,359	1.000	4,359	4,437	(78)
2004.2	222	4,366	1.000	4,366	4,366	0
2005.1	216	4,406	1.000	4,406	4,406	0
2005.2	210	4,789	1.000	4,789	4,789	0
2006.1	204	4,403	1.000	4,403	4,403	0
2006.2	198	4,985	1.000	4,985	4,985	0
2007.1	192	5,090	1.000	5,090	5,090	0
2007.2	186	5,121	1.000	5,121	5,121	0
2008.1	180	4,814	1.000	4,814	4,815	(1)
2008.2	174	5,082	1.000	5,082	5,082	0
2009.1	168	4,735	1.000	4,735	4,736	(1)
2009.2	162	4,763	1.000	4,763	4,763	0
2010.1	156	4,510	1.000	4,510	4,511	(1)
2010.2	150	5,016	1.000	5,016	5,016	0
2011.1	144	4,707	1.000	4,707	4,707	0
2011.2	138	4,945	1.000	4,945	4,945	0
2012.1	132	4,969	1.000	4,969	4,969	0
2012.2	126	4,916	1.000	4,916	4,916	0
2013.1	120	4,808	1.000	4,808	4,808	0
2013.2	114	5,168	1.000	5,168	5,168	0
2014.1	108	4,690	1.000	4,690	4,690	0
2014.2	102	4,831	1.000	4,831	4,832	(1)
2015.1	96	4,644	1.000	4,644	4,644	0
2015.2	90	4,572	1.000	4,572	4,572	0
2016.1	84	4,581	1.000	4,581	4,581	0
2016.2	78	4,932	1.000	4,932	4,935	(3)
2017.1	72	4,429	1.000	4,429	4,430	(1)
2017.2	66	5,182	1.000	5,182	5,182	0
2018.1	60	4,592	1.000	4,592	4,587	5
2018.2	54	4,750	1.000	4,750	4,742	8
2019.1	48	4,458	1.000	4,458	4,472	(14)
2019.2	42	4,857	1.000	4,857	4,884	(27)
2020.1	36	3,232	1.001	3,236	3,250	(14)
2020.2	30	3,373	1.004	3,387	3,410	(23)
2021.1	24	2,477	1.029	2,550	2,603	(53)
2021.2	18	3,324	1.089	3,619	3,855	(236)
2022.1	12	3,227	1.207	3,894	5,131	$(1,238)$
2022.2	6	4,155	1.326	5,509		
Total		181,473		183,879	180,144	$(1,774)$

Financial Services Regulatory Authority of Ontario
Third Party Liability - Direct Compensation
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claim Counts
Data as of $12 / 31 / 22$
(1)

Accident Semester
(4)
${ }_{(3) *}{ }^{(5)}$
${ }^{\text {Prior Repor }}$

Maturity (in
Months)
Reported Claim
GISA Selected Age-
Ultimate
Ultimate
Selected Ultimate
Claim Counts

2003.1	240
2003.2	234
2004.1	228
2004.2	222
2005.1	216
2005.2	210
2006.1	204
2006.2	198
2007.1	192
2007.2	186
2008.1	180
2008.2	174
2009.1	168
2009.2	162
2010.1	156
2010.2	150
2011.1	144
2011.2	138
2012.1	132
2012.2	126
2013.1	120
2013.2	114
2014.1	108
2014.2	102
2015.1	96
2015.2	90
2016.1	84
2016.2	78
2017.1	72
2017.2	66
2018.1	60
2018.2	54
2019.1	48
2019.2	42
2020.1	36
2020.2	30
2021.1	24
2021.2	18
2022.1	12
2022.2	6

Clain Counts

Prior
101,670
89,714
87,336
89,362
89,538
92,094
84,131
93,769
93,929
95,976
97,785
99,607
97,882
97,097
95,995
103,171
95,920
97,831
91,080
99,476
96,931
108,152
109,862
106,833
114,076
113,358
112,469
125,999
116,828
133,983
15,925
134,516
132,250
137,851
77,271
82,859
65,040
99,882
98,533
103,561

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.001
1.003
1.036

101,670
89,714
8,336
8,362
87,538
92,094
84,131
93,769
93,929
95,976
97,785
99,607
97,882
97,097
95,795
103,171
95,920
97,831
99,080
99,476
96,931
108,152
109,862
10,833
114,076
113,358
112,469
125,999
116,828
133,983
125,925
134,516
132,250
13,851
77,721
82,859
65,057
99,947
98,822
107,294

103,699	$(2,029)$
89,701	13
89,363	$(2,027)$
89,362	0
87,538	0
92,094	0
84,131	0
93,770	(1)
93,928	1
95,976	0
97,785	0
99,606	1
97,882	0
97,095	2
95,794	1
103,171	0
95,919	
97,831	0
91,076	
99,470	
96,926	
108,152	0
109,864	(2)
106,832	
114,077	(1)
113,361	(3)
112,470	(1)
126,002	(3)
116,841	(13)
133,995	(12)
125,944	(19)
134,514	2
132,273	(23)
137,881	(30)
77,730	(9)
82,817	42
65,046	11
99,318	629
95,232	3,590

Financial Services Regulatory Authority of Ontario
Accident Benefits - Total Medical/Rehab
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claim Counts
Data as of $12 / 31 / 22$
(1)
(2)
(3)
(4)
(3) ${ }^{(5)}$ (4)
(6)
(7)
Accident Semester

[^37]Reported Claim
GISA Selected Age-to
Ultimate
Selected Ultimate Claim Counts

Prior

2003.1	240
2003.2	234
2004.1	228
2004.2	222
2005.1	216
2005.2	210
2006.1	204
2006.2	198
2007.1	192
2007.2	186
2008.1	180
2008.2	174
2009.1	168
2009.2	162
2010.1	156
2010.2	150
2011.1	144
2011.2	138
2012.1	132
2012.2	126
2013.1	120
2013.2	114
2014.1	108
214.2	102
2015.1	96
2015.2	90
2016.1	84
2016.2	78
2017.1	72
2017.2	66
2018.1	60
2018.2	54
2019.1	48
2019.2	42
2020.1	36
2020.2	30
2021.1	24
2021.2	18
2022.1	12
2022.2	6

32,366
27,346
22,948
23,602
21,111
24,423
22,405
24,657
23,626
25,302
23,634
25,949
25,670
30,032
30,033
29,706
24,826
25,923
22,695
25,074
24,311
29,054
25,363
26,838
27,233
29,480
27,789
31,968
28,307
32,692
29,018
32,718
29,267
33,419
16,927
21,224
16,009
25,122
23,176
29,941
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.001
1.001
1.001
1.000
1.001
0.998
0.979
0.895

32,366
27,346
22,948
23,602
21,111
24,423
22,405
24,657
23,626
25,302
23,634
25,949
25,670
30,032
30,033
29,706
24,826
25,923
22,695
25,074
24,311
29,055
25,366
26,841
27,236
29,485
27,794
31,979
28,316
32,701
29,025
32,732
29,289
33,453
16,940
21,228
16,020
25,064
22,679
26,799

32,600	
27,496	(234)
23,213	(150)
23,613	(266)
21,124	(11)
24,441	(13)
22,423	(18)
24,679	(18)
23,648	(22)
25,325	(22)
23,656	(23)
25,975	(22)
25,695	(26)
30,062	(25)
30,065	(30)
29,737	(32)
24,853	(31)
25,953	(27)
22,719	(30)
25,106	(24)
24,341	(32)
29,091	(30)
25,402	(37)
26,880	(36)
27,277	(39)
29,536	(40)
27,844	(52)
32,033	$(499$
28,363	(54)
32,748	(48)
29,075	(46)
32,710	(50)
29,260	21
3,402	29
16,968	51
21,273	$(29$
16,020	(44)
24,915	0
21,128	149
	1,551

(234)
(266)
(11)
(13)
(18)
(18)
(22)
(22)
(23)
(22)
(26)
(25)
(30)
(32)
(31)
(27)
(30)
(24)
(32)
(30)
(37)
(36)
(39)
(40)
(52)
(49)
(54)
(48)
(46)
(50)
21
29
51

Financial Services Regulatory Authority of Ontario
Accident Benefits - Total Disability Income
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claim Counts
Data as of $12 / 31 / 22$
(1)

Accident Semester
(3)
(4)
(3) ${ }^{(5)}$ (4)
(6)

Prior Repor

Maturity (in
Months)
Reported Claim
GISA Selected Age-to
Ultimate evelopment Fact Selected Ulimate Claim Counts

Prior
Difference

2003.1	240	10,547	1.000	10,547	10,588	(41)
2003.2	234	9,318	1.000	9,318	9,347	(29)
2004.1	228	7,153	1.000	7,153	7,225	(72)
2004.2	222	7,271	1.000	7,271	7,271	0
2005.1	216	6,458	1.000	6,458	6,458	0
2005.2	210	7,515	1.000	7,515	7,515	0
2006.1	204	6,694	1.000	6,694	6,694	0
2006.2	198	7,453	1.000	7,453	7,453	0
2007.1	192	7,081	1.000	7,081	7,081	0
2007.2	186	7,775	1.000	7,775	7,774	
2008.1	180	7,208	1.000	7,208	7,207	
2008.2	174	8,020	1.000	8,020	8,019	
2009.1	168	7,575	1.000	7,575	7,576	(1)
2009.2	162	9,067	1.000	9,067	9,067	
2010.1	156	9,104	1.000	9,104	9,105	(1)
2010.2	150	8,973	1.000	8,973	8,977	(4)
2011.1	144	7,233	1.000	7,233	7,232	
2011.2	138	7,728	1.000	7,728	7,727	
2012.1	132	6,469	1.000	6,470	6,473	(3)
2012.2	126	7,264	1.000	7,263	7,266	(2)
2013.1	120	6,893	1.000	6,892	6,891	
2013.2	114	8,504	1.000	8,503	8,504	(1)
2014.1	108	7,283	1.000	7,281	7,285	(5)
2014.2	102	8,082	0.999	8,077	8,077	
2015.1	96	7,809	0.999	7,800	7,809	(10)
2015.2	90	8,829	0.998	8,814	8,822	(8)
2016.1	84	8,034	0.998	8,017	8,026	(8)
2016.2	78	9,006	0.997	8,975	8,987	(12)
2017.1	72	7,929	0.996	7,901	7,911	(10)
2017.2	66	9,024	0.995	8,978	9,001	(23)
2018.1	60	7,628	0.991	7,563	7,644	(81)
2018.2	54	8,610	0.988	8,504	8,533	(29)
2019.1	48	7,585	0.981	7,441	7,485	(44)
2019.2	42	8,798	0.972	8,553	8,677	(125)
2020.1	36	4,803	0.962	4,623	4,697	(75)
2020.2	30	6,030	0.953	5,744	5,842	(98)
2021.1	24	4,448	0.932	4,146	4,256	(110)
2021.2	18	7,242	0.890	6,447	6,533	(86)
2022.1	12	6,530	0.845	5,520	5,573	(52)
2022.2	6	6,018	1.111	6,688		
Total		304,991		302,371	296,607	(924)

Financial Services Regulatory Authority of Ontario
Accident Benefits - Funeral \& Death Benefits
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claim Counts
Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4)	$\begin{gathered} (5) \\ (3) *(4) \end{gathered}$	(6) Prior Report	(7)
		Reported Claim Counts: Development Factors				
cident Semester	$\begin{aligned} & \text { Maturity (in } \\ & \text { Months) } \end{aligned}$	Reported Claim Counts	GISA Selected Age-toUltimate Development Factors	Selected Ultimate Claim Counts	Prior	Difference
2003.1	240	524	1.000	524	543	(19)
2003.2	234	649	1.000	649	649	-
2004.1	228	520	1.000	520	535	(15)
2004.2	222	675	1.000	675	675	0
2005.1	216	548	1.000	548	548	0
2005.2	210	647	1.000	647	647	0
2006.1	204	557	1.000	557	557	0
2006.2	198	654	1.000	654	654	0
2007.1	192	568	1.000	568	568	0
2007.2	186	596	1.000	596	596	0
2008.1	180	446	1.000	446	446	0
2008.2	174	504	1.000	504	504	0
2009.1	168	402	1.000	402	402	0
2009.2	162	452	1.000	452	452	0
2010.1	156	392	1.000	392	392	0
2010.2	150	471	1.000	471	471	0
2011.1	144	353	1.000	353	353	0
2011.2	138	467	1.000	467	467	0
2012.1	132	397	1.000	397	397	0
2012.2	126	487	1.000	487	487	0
2013.1	120	357	1.000	357	357	0
2013.2	114	475	1.000	475	475	0
2014.1	108	344	1.000	344	344	0
2014.2	102	481	1.000	481	480	1
2015.1	96	353	1.000	353	353	0
2015.2	90	429	1.000	429	429	0
2016.1	84	390	1.000	390	390	0
2016.2	78	503	1.000	503	503	0
2017.1	72	407	1.000	407	411	(4)
2017.2	66	535	1.000	535	536	(1)
2018.1	60	389	1.000	389	387	2
2018.2	54	449	1.000	449	455	(6)
2019.1	48	336	1.000	336	340	(4)
2019.2	42	458	0.998	457	452	,
2020.1	36	293	1.001	293	289	5
2020.2	30	402	1.002	403	404	(1)
2021.1	24	267	1.006	269	269	(0)
2021.2	18	420	0.992	417	402	15
2022.1	12	298	0.958	285	278	8
2022.2	6	383	1.071	410		
Total		18,278		18,291	17,896	(15)

Financial Services Regulatory Authority of Ontario
Accident Benefits - Quebec Excess
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claim Counts
Data as of $12 / 31 / 22$
(1)
(2)
(3)
(4)
${ }_{(3) *}{ }^{(5)}$
(6)

Prior Repor
(7)
Accident Semester

[^38]Reported Claim
GISA Selected Age-to Ultimate

Selected Ultimate Claim Counts

Prior
Difference

2003.1	240	9	1.000	9	9	0
2003.2	234	3	1.000	3	3	0
2004.1	228	1	1.000	1	1	0
2004.2	222	2	1.000	2	2	0
2005.1	216	2	1.000	2	2	0
2005.2	210	4	1.000	4	4	0
2006.1	204	1	1.000	1	1	0
2006.2	198	7	1.000	7	7	0
2007.1	192	1	1.000	1	1	0
2007.2	186	6	1.000	6	6	0
2008.1	180	1	1.000	1	1	0
2008.2	174	4	1.000	4	4	0
2009.1	168	2	1.000	2	2	0
2009.2	162	3	1.000	3	3	0
2010.1	156	1	1.000	1	1	0
2010.2	150	3	1.000	3	3	0
2011.1	144	2	1.000	2	2	0
2011.2	138	7	1.000	7	7	0
2012.1	132	1	1.000	1	1	0
2012.2	126	4	1.000	4	4	0
2013.1	120	2	1.000	2	1	1
2013.2	114	2	1.000	2	2	0
2014.1	108	2	1.000	2	2	0
2014.2	102	5	1.000	5	5	0
2015.1	96	4	1.000	4	4	0
2015.2	90	4	1.000	4	4	0
2016.1	84	0	1.000	0	0	0
2016.2	78	2	1.000	2	2	0
2017.1	72	3	1.000	3	3	0
2017.2	66	2	1.000	2	2	0
2018.1	60	4	1.000	4	4	0
2018.2	54	4	1.000	4	4	0
2019.1	48	6	1.000	6	5	1
2019.2	42	3	0.990	3	3	0
2020.1	36	4	0.980	4	4	0
2020.2	30	2	0.920	2	2	(0)
2021.1	24	1	0.979	1	1	0
2021.2	18	2	0.988	2	2	(0)
2022.1	12	3	0.777	2	1	2
2022.2	6	23	0.506	12		
Total		142		130	114	4

Financial Services Regulatory Authority of Ontario
Collision
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claim Counts
Data as of $12 / 31 / 22$
(2)
(3)
(4)
(3) ${ }^{(5)}$ (4)
(6)
(7)
Accident Semester

Maturity (in Months)

Reported Claim
GISA Selected Age-to
Ultimate
Selected Ultimate Claim Counts

Prior

2003.1	240
2003.2	234
2004.1	228
2004.2	222
2005.1	216
2005.2	210
2006.1	204
2006.2	198
2007.1	192
2007.2	186
2008.1	180
2008.2	174
2009.1	168
2099.2	162
2010.1	156
2010.2	150
2011.1	144
2011.2	138
2012.1	132
2012.2	126
2013.1	120
2013.2	114
2014.1	108
2014.2	102
2015.1	96
2015.2	90
2016.1	84
2016.2	78
2017.1	72
2017.2	66
2018.1	60
2018.2	54
2019.1	48
2019.2	42
2020.1	36
2020.2	30
2021.1	24
2021.2	18
2022.1	12
2022.2	6

79,58865,615	
	66,861
	63,633
	65,071
	64,077
	61,121
	67,052
	73,381
	68,700
	68,424
	66,800
	65,728
	62,456
	59,047
	61,451
	61,897
	58,898
	56,729
	59,545
	61,486
	66,889
	72,362
	65,896
	73,248
	68,953
	72,946
	77,556
	74,853
	83,124
	83,370
	85,029
	87,223
	87,168
	54,662
	54,906
	43,123
	64,742
	69,468
	77,088

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.984

79,588
65,615
66,861
63,633
65,071
64,077
61,121
67,052
73,381
68,700
68,424
66,800
65,728
62,456
59,047
61,451
61,897
58,898
56,729
59,545
61,486
66,889
72,362
65,896
73,248
68,953
72,946
77,556
74,853
83,124
83,370
85,029
87,223
87,168
54,662
54,906
43,123
64,725
69,382
75,874

80,333	(745)
65,928	(313)
67,595	(734)
63,633	0
65,071	0
64,077	0
61,121	0
67,053	(1)
73,381	0
68,700	0
68,424	0
66,800	0
65,729	(1)
62,456	0
59,047	0
61,451	0
61,897	0
58,893	5
56,729	0
59,543	2
61,481	5
66,889	0
72,362	0
65,894	2
73,250	(2)
68,956	(3)
72,948	(2)
77,560	(4)
74,854	(1)
83,129	(5)
83,372	(2)
85,038	(9)
87,279	(56)
87,236	(68)
54,655	7
54,895	11
43,146	(23)
64,733	(8)
68,647	735
$2,644,183$	$(1,209)$
,	

Financial Services Regulatory Authority of Ontario
Comprehensive - Total
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claim Counts
Data as of $12 / 31 / 22$
(1)
(2)
(3)
(4)
(3) ${ }^{(5)}$ (4)
(6)
(7)
Accident Semester

[^39]Reported Claim
GISA Selected Age-to
Ultimate
Selected Ultimate Claim Counts

Prior
Difference

2003.1	240
2003.2	234
2004.1	228
2004.2	222
2005.1	216
2005.2	210
2006.1	204
2006.2	198
2007.1	192
2007.2	186
2008.1	180
2008.2	174
2009.1	168
2009.2	162
2010.1	156
2010.2	150
2011.1	144
2011.2	138
2012.1	132
2012.2	126
2013.1	120
2013.2	114
2014.1	108
2014.2	102
2015.1	96
2015.2	90
2016.1	84
2016.2	78
2017.1	72
2017.2	66
2018.1	60
2018.2	54
2019.1	48
2019.2	42
2020.1	36
2020.2	30
2021.1	24
2021.2	18
2022.1	12
2022.2	6

100,699
84,765
69,893
64,415
57,986
63,655
55,932
64,143
59,797
63,880
75,755
62,232
76,355
64,878
57,135
59,634
81,291
74,504
72,817
77,750
67,830
77,990
71,369
68,974
70,715
72,099
77,142
72,666
70,232
69,326
77,204
72,674
71,520
74,377
57,030
69,091
58,273
76,276
80,459
71,106
6,8189

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.001
1.003
1.013
1.122

100,699
84,765
69,893
64,415
57,986
63,655
55,932
64,143
59,797
63,880
75,755
62,232
76,35
64,878
57,135
59,634
81,291
74,54
77,817
77,750
67,830
77,990
71,399
68,744
70,715
72,099
77,142
72,666
70,32
69,326
77,204
72,674
71,520
74,377
75,040
69,123
58,329
76,473
81,469
79,813

101,653	(954)
84,563	202
70,841	(948)
64,415	0
57,986	0
63,655	0
55,932	0
64,144	(1)
59,797	0
63,880	0
75,755	0
62,232	0
76,357	(2)
64,878	0
57,135	0
59,634	0
81,291	0
74,502	2
72,817	0
77,750	0
67,828	2
77,990	0
71,369	0
68,974	0
70,715	0
72,098	1
77,141	1
72,665	1
70,233	(1)
69,322	4
77,205	(1)
72,663	11
71,519	1
74,365	12
57,201	(161)
69,036	87
58,272	57
76,278	195
83,410	$(1,941)$
$2,747,502$	$(3,434)$

Financial Services Regulatory Authority of Ontario
Comprehensive - Theft
Private Passengers Vehicles (Excluding Farmers)

Selected Ultimate Claim Counts

Data as of $12 / 31 / 22$

Financial Services Regulatory Authority of Ontario
All Perils
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claim Counts
Data as of $12 / 31 / 22$
(1)
(2)
(3)
(4)
(3) ${ }^{(5)}$ (4)
(6)

Prior Repor
Reported Claim Counts: Development Factors
Accident Semester

[^40]Reported Claim
GISA Selected Age-to Ultimate

Selected Ultimate Claim Counts

Prior

2003.1	240
2003.2	234
2004.1	228
2004.2	222
2005.1	216
2005.2	210
2006.1	204
2006.2	198
2007.1	192
2007.2	186
2008.1	180
2008.2	174
2009.1	168
2009.2	162
2010.1	156
2010.2	150
2011.1	144
2011.2	138
2012.1	132
2012.2	126
2013.1	120
2013.2	114
2014.1	108
2014.2	102
2015.1	96
2015.2	90
2016.1	84
2016.2	78
2017.1	72
2017.2	66
2018.1	60
2018.2	54
2019.1	48
2019.2	42
2020.1	36
2020.2	30
2021.1	24
2021.2	18
2022.1	12
2022.2	6

36,440
30,927
28,965
27,023
26,965
28,197
25,566
28,139
29,070
26,936
26,368
24,969
27,538
23,703
20,779
21,982
24,362
23,946
23,075
25,280
24,391
28,458
27,850
26,940
28,733
29,038
30,354
34,763
35,565
41,103
44,652
45,064
4,532
48,061
32,809
37,269
31,089
4,317
47,655
48,356
262,229

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.003
1.037

36,440
30,927
28,95
27,023
26,965
28,197
25,566
28,139
29,370
26,936
26,368
24,969
27,38
23,703
20,779
21,982
24,362
23,946
23,075
25,280
24,391
28,458
27,550
26,490
28,733
29,038
30,354
34,763
35,565
41,103
44,652
45,064
45,532
48,01
32,809
37,272
31,095
44,334
47,811
50,153

36,792	(352)
30,940	(13)
29,316	(351)
27,023	0
26,965	0
28,197	0
25,566	0
28,139	0
29,070	0
26,936	0
26,368	0
24,969	0
27,539	(1)
23,703	0
20,780	(1)
21,982	0
24,362	0
23,946	0
23,075	0
25,280	0
24,391	0
28,458	0
27,850	0
26,941	(1)
28,734	(1)
29,037	1
30,355	(1)
34,768	(5)
35,571	(6)
41,113	(10)
44,660	(8)
45,085	(21)
45,537	(5)
48,079	(18)
32,791	18
37,248	24
31,058	38
43,718	616
47,179	631
$1,233,521$	534

Financial Services Regulatory Authority of Ontario
Specified Perils
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claim Counts
Data as of $12 / 31 / 22$
(1)
(2)
(3)
(4)
${ }_{(3)}{ }^{(5)}$ (4)
${ }^{\text {Prior Report }}$
(7)
Accident Semester

[^41]Reported Claim
GISA Selected Age-to
Ultimate Ultimate

Selected Ultimate Claim Counts

Prior
Difference

2003.1	240	74	1.000	74	74	0
2003.2	234	78	1.000	78	78	0
2004.1	228	72	1.000	72	78	(6)
2004.2	222	86	1.000	86	86	0
2005.1	216	63	1.000	63	63	0
2005.2	210	68	1.000	68	68	0
2006.1	204	60	1.000	60	60	0
2006.2	198	76	1.000	76	76	0
2007.1	192	69	1.000	69	69	0
2007.2	186	67	1.000	67	67	0
2008.1	180	61	1.000	61	61	0
2008.2	174	64	1.000	64	64	0
2009.1	168	66	1.000	66	66	0
2009.2	162	43	1.000	43	43	0
2010.1	156	49	1.000	49	49	0
2010.2	150	43	1.000	43	43	0
2011.1	144	50	1.000	50	50	0
2011.2	138	36	1.000	36	36	0
2012.1	132	14	1.000	14	14	0
2012.2	126	21	1.000	21	21	0
2013.1	120	16	1.000	16	16	0
2013.2	114	22	1.000	22	22	0
2014.1	108	14	1.000	14	14	0
2014.2	102	17	1.000	17	17	0
2015.1	96	12	1.000	12	12	0
2015.2	90	16	1.000	16	16	0
2016.1	84	10	1.000	10	10	0
2016.2	78	8	1.000	8	8	0
2017.1	72	10	1.000	10	10	0
2017.2	66	19	1.000	19	19	0
2018.1	60	10	1.000	10	10	0
2018.2	54	8	1.000	8	8	0
2019.1	48	10	1.000	10	10	0
2019.2	42	14	1.000	14	14	0
2020.1	36	6	1.000	6	,	0
2020.2	30	17	1.000	17	17	0
2021.1	24	16	1.000	16	16	0
2021.2	18	62	0.996	62	61	1
2022.1	12	46	0.999	46	41	5
2022.2	6	32	0.992	32		
Total		1,525		1,524	1,493	(0)

Financial Services Regulatory Authority of Ontario
Uninsured Auto
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claim Counts
Data as of $12 / 31 / 22$
(1)
(2)
(3)
(4)
(3) ${ }^{(5)}$ (4)
(6)
(7)
Accident Semester
Maturity (in
Months)

Reported Claim
Counts
GISA Selected AgeMonths) Ultimate

Selected Ultimate Claim Counts

Prior
Difference

2003.1	240	1,153	1.000	1,153	1,168	(15)
2003.2	234	1,244	1.000	1,244	1,242	2
2004.1	228	1,136	1.000	1,136	1,150	(14)
2004.2	222	1,324	1.000	1,324	1,324	0
2005.1	216	1,229	1.000	1,229	1,229	0
2005.2	210	1,366	1.000	1,366	1,365	1
2006.1	204	1,230	1.000	1,230	1,230	0
2006.2	198	1,233	1.000	1,233	1,233	0
2007.1	192	1,153	1.000	1,153	1,153	0
2007.2	186	1,263	1.000	1,263	1,263	0
2008.1	180	1,082	1.000	1,082	1,082	0
2008.2	174	1,060	1.000	1,060	1,060	0
2009.1	168	966	1.000	966	966	0
2009.2	162	1,120	1.000	1,120	1,120	0
2010.1	156	934	1.000	934	934	0
2010.2	150	1,093	1.000	1,093	1,093	0
2011.1	144	922	1.000	922	923	(1)
2011.2	138	939	1.000	939	940	(1)
2012.1	132	861	1.000	861	861	0
2012.2	126	925	1.000	925	925	0
2013.1	120	769	1.000	769	768	1
2013.2	114	818	1.000	818	817	1
2014.1	108	749	1.000	749	747	2
2014.2	102	789	1.000	789	787	2
2015.1	96	756	0.998	755	753	2
2015.2	90	706	0.997	704	702	2
2016.1	84	733	0.996	730	728	3
2016.2	78	779	0.995	775	774	1
2017.1	72	713	0.995	709	707	2
2017.2	66	812	0.995	808	804	4
2018.1	60	726	0.993	721	721	(0)
2018.2	54	759	0.991	752	757	(5)
2019.1	48	686	0.989	679	677	2
2019.2	42	795	0.986	784	784	(1)
2020.1	36	541	0.985	533	531	2
2020.2	30	655	0.983	644	643	1
2021.1	24	590	0.984	581	577	3
2021.2	18	830	0.980	813	808	6
2022.1	12	913	0.979	894	828	66
2022.2	6	894	1.123	1,004		
Total		37,246		37,243	36,174	66

Financial Services Regulatory Authority of Ontario
Underinsured Motorist
Private Passengers Vehicles (Excluding Farmers)
Selected Ultimate Claim Counts
Data as of $12 / 31 / 22$
(1)
(2)
(3)
(4)
${ }_{(3) *}{ }^{(5)}$ (4)
(6)
(7)
Accident Semester

[^42]Reported Claim
GISA Selected Age-to
Ultimate
Selected Ultimate Claim Counts

Prior
Difference

2003.1	240	110	1.000	110	109	1
2003.2	234	101	1.000	101	99	2
2004.1	228	90	1.000	90	89	
2004.2	222	123	1.000	123	122	
2005.1	216	114	1.000	114	114	0
2005.2	210	95	1.000	95	95	0
2006.1	204	81	1.000	81	81	0
2006.2	198	120	1.000	120	120	0
2007.1	192	109	1.000	109	109	0
2007.2	186	127	1.000	127	127	0
2008.1	180	125	1.000	125	123	2
2008.2	174	105	1.000	105	105	0
2009.1	168	83	1.000	83	82	1
2009.2	162	121	1.000	121	121	0
2010.1	156	96	1.000	96	97	(1)
2010.2	150	99	1.000	99	99	0
2011.1	144	97	1.000	97	98	(1)
2011.2	138	110	1.000	110	111	(1)
2012.1	132	97	1.000	97	98	(1)
2012.2	126	101	1.000	101	101	0
2013.1	120	114	1.000	114	113	
2013.2	114	108	0.994	107	111	(4)
2014.1	108	121	0.981	119	120	(1)
2014.2	102	90	0.974	88	88	(0)
2015.1	96	130	0.964	125	125	(0)
2015.2	90	114	0.934	107	111	(4)
2016.1	84	141	0.906	128	127	
2016.2	78	155	0.876	136	137	(2)
2017.1	72	165	0.838	138	142	(4)
2017.2	66	176	0.788	139	142	(3)
2018.1	60	174	0.729	127	122	
2018.2	54	209	0.671	140	144	(4)
2019.1	48	230	0.604	139	137	2
2019.2	42	279	0.551	154	153	1
2020.1	36	202	0.496	100	94	6
2020.2	30	231	0.486	112	129	(17)
2021.1	24	123	0.769	95	84	11
2021.2	18	150	0.946	142	127	15
2022.1	12	159	1.077	171	175	(3)
2022.2	6	116	1.385	161		
Total		5,290		4,644	4,479	4

Appendix E. Trend Model Exhibits

End Trend Period = 2022.2
Excluded Points = NA
Parameters Included: time, trend_level_change, seasonality, mobility
Future Trend Start Date $=2016-04-01$
Future Trend Start Date $=2016-04-01$

Fit	Start Date	Time	Seasonality	Mobility	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.022 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.004$)	$0.181(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.066 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000$)	0.966	+2.26\%	-4.29\%
Loss Cost	2011.2	0.028 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.002$)	$0.187(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.073(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.969	+2.84\%	-4.44\%
Loss Cost	2012.1	$0.029(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.005$)	$0.186(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.074(\mathrm{Cl}=+/-0.027 ; p=0.000)$	0.968	+2.93\%	-4.45\%
Loss Cost	2012.2	0.036 ($\mathrm{Cl}=+/-0.023 ; p=0.003$)	$0.192(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.084(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000$)	0.971	+3.72\%	-4.59\%
Loss Cost	2013.1	0.035 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.019$)	$0.192(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.082(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000)$	0.970	+3.61\%	-4.58\%
Loss Cost	2013.2	$0.047(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.016)$	$0.197(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.095(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000)$	0.971	+4.81\%	-4.72\%
Loss Cost	2014.1	$0.052(\mathrm{Cl}=+/-0.052 ; p=0.048)$	$0.196(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.101(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.003)$	0.970	+5.37\%	-4.75\%
Loss Cost	2014.2	$0.091(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.022)$	$0.204(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.142(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.003)$	0.974	+9.50\%	-4.96\%
Loss Cost	2015.1	$0.001(\mathrm{Cl}=+/-0.120 ; p=0.982)$	$0.214(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.051(\mathrm{Cl}=+/-0.125 ; p=0.394)$	0.980	+0.13\%	-4.81\%
Loss Cost	2015.2	$0.131(\mathrm{Cl}=+/-0.389 ; \mathrm{p}=0.471)$	$0.220(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.182(\mathrm{Cl}=+/-0.395 ; \mathrm{p}=0.330)$	0.980	+13.99\%	-4.96\%
Loss Cost	2016.1	$-0.051(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.220(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$N A(C l=+/-N A ; p=N A)$	0.979	-4.96\%	-4.96\%
Loss Cost	2016.2	$-0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.219(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.978	-5.02\%	-5.02\%
Severity	2011.1	$0.011(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.293)$	$0.046(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.104)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.436)$	$0.014(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.408)$	0.627	+1.14\%	+2.58\%
Severity	2011.2	$0.011(\mathrm{Cl}=+/-0.026 ; p=0.371)$	0.046 ($\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.121$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.449)$	$0.014(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.469)$	0.597	+1.15\%	+2.58\%
Severity	2012.1	$0.013(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.396)$	$0.044(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.150)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.465$)	$0.012(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.574)$	0.585	+1.31\%	+2.56\%
Severity	2012.2	$0.025(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.180)$	$0.053(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.096)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.402)$	$-0.002(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.938)$	0.608	+2.52\%	+2.32\%
Severity	2013.1	0.040 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.076$)	0.045 ($\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.159)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.414)$	$-0.019(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.496)$	0.639	+4.13\%	+2.17\%
Severity	2013.2	$0.061(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.040$)	$0.054(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.101)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.349)$	$-0.042(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.223)$	0.642	+6.28\%	+1.92\%
Severity	2014.1	$0.063(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.116)$	$0.053(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.127)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.370)$	$-0.044(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.322)$	0.590	+6.54\%	+1.90\%
Severity	2014.2	$0.092(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.139)$	$0.059(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.113)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.347)$	$-0.075(\mathrm{Cl}=+/-0.139 ; \mathrm{p}=0.264)$	0.527	+9.62\%	+1.73\%
Severity	2015.1	$0.068(\mathrm{Cl}=+/-0.234 ; \mathrm{p}=0.539)$	$0.062(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.125)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.363)$	$-0.050(\mathrm{Cl}=+/-0.245 ; \mathrm{p}=0.663)$	0.435	+6.98\%	+1.78\%
Severity	2015.2	$0.093(\mathrm{Cl}=+/-0.783 ; \mathrm{p}=0.797)$	$0.063(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.164)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.386)$	$-0.076(\mathrm{Cl}=+/-0.795 ; \mathrm{p}=0.836)$	0.304	+9.74\%	+1.74\%
Severity	2016.1	$0.017(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.191)$	$0.063(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.164)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.386)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.326	+1.74\%	+1.74\%
Severity	2016.2	0.015 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.304)$	$0.058(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.231)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.409)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.172	+1.51\%	+1.51\%
Frequency	2011.1	$0.011(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.141)$	$0.136(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.080(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.976	+1.11\%	-6.70\%
Frequency	2011.2	$0.017(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.055)$	$0.141(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.088(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.977	+1.68\%	-6.84\%
Frequency	2012.1	$0.016(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.121)$	$0.142(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.087(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.976	+1.60\%	-6.83\%
Frequency	2012.2	$0.012(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.343)$	$0.139(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.082(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	0.977	+1.17\%	-6.76\%
Frequency	2013.1	$-0.005(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.705$)	$0.148(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.063(\mathrm{Cl}=+/-0.036 ; p=0.002)$	0.982	-0.50\%	-6.61\%
Frequency	2013.2	$-0.014(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.426)$	$0.144(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.053(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.022)$	0.982	-1.38\%	-6.51\%
Frequency	2014.1	$-0.011(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.648)$	$0.143(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.056(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.058)$	0.980	-1.10\%	-6.52\%
Frequency	2014.2	$-0.001(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.977)$	$0.145(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.067(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.125)$	0.979	-0.11\%	-6.58\%
Frequency	2015.1	$-0.066(\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.321)$	$0.152(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.147 ; p=0.993)$	0.980	-6.41\%	-6.47\%
Frequency	2015.2	$0.038(\mathrm{Cl}=+/-0.463 ; \mathrm{p}=0.858)$	$0.157(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.106(\mathrm{Cl}=+/-0.470 ; \mathrm{p}=0.625$)	0.978	+3.88\%	-6.59\%
Frequency	2016.1	$-0.068(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.157(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.977	-6.59\%	-6.59\%
Frequency	2016.2	$-0.066(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.161(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$N A(C I=+/-N A ; p=N A)$	0.975	-6.43\%	-6.43\%

Fit	Start Date	Seasonality	Mobility	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.182 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000$)	0.009 (Cl = +/-0.002; p = 0.000)	$-0.034(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.948	0.00\%	-3.35\%
Loss Cost	2011.2	$0.181(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.034(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.948	0.00\%	-3.37\%
Loss Cost	2012.1	$0.187(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.036(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.952	0.00\%	-3.54\%
Loss Cost	2012.2	$0.185(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.037(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.952	0.00\%	-3.59\%
Loss Cost	2013.1	$0.194(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.039(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.958	0.00\%	-3.83\%
Loss Cost	2013.2	0.190 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.040 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	0.959	0.00\%	-3.90\%
Loss Cost	2014.1	$0.198(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.042(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.962	0.00\%	-4.12\%
Loss Cost	2014.2	0.195 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.043(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.962	0.00\%	-4.20\%
Loss Cost	2015.1	$0.214(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.049(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.981	0.00\%	-4.80\%
Loss Cost	2015.2	0.215 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.049(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.981	0.00\%	-4.77\%
Loss Cost	2016.1	0.220 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.051(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.979	0.00\%	-4.96\%
Loss Cost	2016.2	0.219 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.978	0.00\%	-5.02\%
Severity	2011.1	0.046 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.101$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.490)$	0.030 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.001$)	0.623	0.00\%	+3.09\%
Severity	2011.2	$0.043(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.138)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.507)$	0.030 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.001$)	0.601	0.00\%	+3.05\%
Severity	2012.1	0.045 ($\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.142$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.505$)	$0.030(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.002)$	0.591	0.00\%	+3.00\%
Severity	2012.2	0.048 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.134)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.506)$	0.030 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.002)$	0.586	0.00\%	+3.05\%
Severity	2013.1	$0.047(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.170)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.533)$	$0.031(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.003)$	0.579	0.00\%	+3.10\%
Severity	2013.2	$0.045(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.212)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.550)$	0.030 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.005$)	0.544	0.00\%	+3.06\%
Severity	2014.1	$0.056(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.127)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.458)$	$0.027(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.013$)	0.537	0.00\%	+2.71\%
Severity	2014.2	0.050 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.189)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.476)$	0.025 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.022)$	0.472	0.00\%	+2.56\%
Severity	2015.1	0.065 ($\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.098$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.362)$	0.020 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.063$)	0.464	0.00\%	+2.06\%
Severity	2015.2	0.060 ($\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.147)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.381)$	$0.019(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.106)$	0.363	0.00\%	+1.89\%
Severity	2016.1	$0.063(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.164)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.386)$	$0.017(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.191)$	0.326	0.00\%	+1.74\%
Severity	2016.2	$0.058(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.231)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.409)$	0.015 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.304)$	0.172	0.00\%	+1.51\%
Frequency	2011.1	$0.136(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.065(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.974	0.00\%	-6.25\%
Frequency	2011.2	$0.137(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.064(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.974	0.00\%	-6.23\%
Frequency	2012.1	$0.142(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.066(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.974	0.00\%	-6.35\%
Frequency	2012.2	$0.137(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.067(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.977	0.00\%	-6.45\%
Frequency	2013.1	0.147 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000$)	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.070(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.983	0.00\%	-6.72\%
Frequency	2013.2	0.146 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	-0.070 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.982	0.00\%	-6.75\%
Frequency	2014.1	$0.142(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.069(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.981	0.00\%	-6.65\%
Frequency	2014.2	0.145 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000$)	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.068(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.981	0.00\%	-6.59\%
Frequency	2015.1	0.149 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.070 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.980	0.00\%	-6.72\%
Frequency	2015.2	0.155 ($\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.068(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.980	0.00\%	-6.53\%
Frequency	2016.1	$0.157(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.068(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.977	0.00\%	-6.59\%
Frequency	2016.2	$0.161(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.066(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.975	0.00\%	-6.43\%

Fit	Start Date	Time	Seasonality	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.020 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.007$)	0.170 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000$)	$-0.057(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.001$)	0.882	+1.97\%	-3.64\%
Loss Cost	2011.2	0.025 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.003)$	$0.176(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	$-0.064(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.894	+2.50\%	-3.86\%
Loss Cost	2012.1	0.026 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.009$)	0.175 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000$)	$-0.065(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.001)$	0.891	+2.61\%	-3.90\%
Loss Cost	2012.2	$0.032(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.007)$	$0.181(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$-0.074(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.001)$	0.897	+3.30\%	-4.11\%
Loss Cost	2013.1	$0.031(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.031)$	$0.181(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$-0.073(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.003)$	0.893	+3.20\%	-4.09\%
Loss Cost	2013.2	$0.041(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.032)$	$0.187(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000)$	$-0.085(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.005$)	0.895	+4.22\%	-4.29\%
Loss Cost	2014.1	$0.048(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.071$)	$0.184(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.000)$	$-0.093(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.015)$	0.889	+4.89\%	-4.38\%
Loss Cost	2014.2	$0.084(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.035)$	$0.194(\mathrm{Cl}=+/-0.050 ; p=0.000)$	$-0.132(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.011)$	0.909	+8.71\%	-4.76\%
Loss Cost	2015.1	$-0.014(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.716)$	$0.209(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$-0.029(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.502)$	0.964	-1.41\%	-4.27\%
Loss Cost	2015.2	$0.079(\mathrm{Cl}=+/-0.315 ; \mathrm{p}=0.550)$	0.215 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000$)	$-0.125(\mathrm{Cl}=+/-0.326 ; \mathrm{p}=0.371)$	0.966	+8.18\%	-4.49\%
Loss Cost	2016.1	$-0.046(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.002)$	0.215 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	$N A(C l=+/-N A ; p=N A)$	0.961	-4.49\%	-4.49\%
Loss Cost	2016.2	$-0.046(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.009)$	$0.214(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.958	-4.53\%	-4.53\%
Severity	2011.1	$0.007(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.364)$	0.041 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.046$)	0.030 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.060)$	0.686	+0.66\%	+3.71\%
Severity	2011.2	$0.006(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.522)$	$0.039(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.068)$	$0.031(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.076)$	0.653	+0.56\%	+3.76\%
Severity	2012.1	$0.007(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.533)$	$0.038(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.094)$	$0.030(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.128)$	0.645	+0.66\%	+3.73\%
Severity	2012.2	$0.018(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.150)$	0.048 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.038)$	0.015 ($\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.441$)	0.715	+1.79\%	+3.34\%
Severity	2013.1	$0.034(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.016)$	$0.037(\mathrm{Cl}=+/-0.039 ; p=0.060)$	$-0.005(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.788)$	0.816	+3.46\%	+2.95\%
Severity	2013.2	$0.054(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.002)$	$0.048(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.010)$	$-0.029(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.127)$	0.881	+5.51\%	+2.52\%
Severity	2014.1	$0.055(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.013)$	$0.047(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.019)$	$-0.030(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.211)$	0.853	+5.66\%	+2.50\%
Severity	2014.2	$0.080(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.014$)	$0.054(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.012)$	$-0.058(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.089)$	0.840	+8.33\%	+2.21\%
Severity	2015.1	$0.048(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.316)$	$0.059(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.014)$	$-0.025(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.630)$	0.797	+4.93\%	+2.38\%
Severity	2015.2	0.016 ($\mathrm{Cl}=+/-0.393 ; \mathrm{p}=0.919$)	$0.057(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.043)$	$0.008(\mathrm{Cl}=+/-0.406 ; \mathrm{p}=0.961$)	0.667	+1.65\%	+2.47\%
Severity	2016.1	$0.024(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.045)$	$0.057(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.043)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.700	+2.47\%	+2.47\%
Severity	2016.2	$0.019(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.167)$	$0.050(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.090)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.492	+1.90\%	+1.90\%
Frequency	2011.1	$0.013(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.070)$	0.130 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000$)	$-0.086(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.885	+1.30\%	-7.09\%
Frequency	2011.2	$0.019(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.019)$	$0.137(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$-0.096(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000)$	0.905	+1.93\%	-7.35\%
Frequency	2012.1	$0.019(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.048)$	$0.137(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	$-0.095(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	0.900	+1.93\%	-7.35\%
Frequency	2012.2	0.015 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.195)$	$0.133(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$-0.090(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	0.901	+1.48\%	-7.21\%
Frequency	2013.1	$-0.003(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.803)$	$0.144(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.000)$	$-0.068(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.001)$	0.946	-0.26\%	-6.84\%
Frequency	2013.2	$-0.012(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.354)$	$0.139(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	$-0.056(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.011$)	0.952	-1.22\%	-6.64\%
Frequency	2014.1	$-0.007(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.693)$	$0.137(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$-0.062(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.027)$	0.941	-0.72\%	-6.71\%
Frequency	2014.2	$0.003(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.904)$	0.140 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000$)	$-0.074(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.062)$	0.940	+0.35\%	-6.82\%
Frequency	2015.1	$-0.062(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.189)$	0.150 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000$)	$-0.005(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.921)$	0.954	-6.05\%	-6.50\%
Frequency	2015.2	$0.062(\mathrm{Cl}=+/-0.346 ; \mathrm{p}=0.663)$	$0.158(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000)$	$-0.133(\mathrm{Cl}=+/-0.358 ; \mathrm{p}=0.384)$	0.957	+6.43\%	-6.80\%
Frequency	2016.1	$-0.070(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.158(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.945	-6.80\%	-6.80\%
Frequency	2016.2	$-0.065(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.003)$	$0.164(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.001$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.950	-6.31\%	-6.31\%

Coverage $=B 1$
End Trend Period $=2022$
Excluded Points $=N A$
Parameters Included: time, scolar_level_change, trend_level_change, seasonality, mobility
Scalar_ Level Change Start Date $=2022-07$-.01
Future Trend Start Date $=$ 2016-04-01

Fit	Start Date	Time	Seasonality	Mobility	Scalar Shift	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	$0.024(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.002)$	$0.179(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.066 ($\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.255$)	$-0.074(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.966	+2.46\%	-4.83\%
Loss Cost	2011.2	$0.030(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.001)$	$0.185(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.071(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.208)$	$-0.082(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	0.970	+3.09\%	-5.02\%
Loss Cost	2012.1	$0.032(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.003)$	$0.184(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.072(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.213)$	$-0.084(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	0.969	+3.24\%	-5.05\%
Loss Cost	2012.2	0.040 ($\mathrm{C}=+$ +-0.023; $\mathrm{p}=0.002$)	0.190 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000$)	$0.008(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.077(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.177)$	$-0.094(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	0.97	+4.10\%	-5.24\%
Loss Cost	2013.1	0.040 ($\mathrm{Cl}=+/-0.029 ; p=0.010$)	0.190 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000$)	$0.008(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.077(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.195$)	$-0.094(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	0.971	+4.10\%	-5.24\%
Loss Cost	2013.2	$0.053(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.008)$	0.195 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000$)	0.008 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.081(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.168)$	$-0.109(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000)$	0.974	+5.44\%	-5.42\%
Loss Cost	2014.1	$0.061(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.024)$	0.193 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.084(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.168)$	$-0.118(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.001)$	0.972	+6.31\%	-5.49\%
Loss Cost	2014.2	$0.104(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.009)$	0.202 ($\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000$)	$0.008(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.092 ($\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.114$)	$-0.163(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.001)$	0.978	+10.91\%	-5.78\%
Loss Cost	2015.1	$0.022(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.685)$	$0.211(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	0.008 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.079(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.136)$	$-0.079(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.190)$	0.982	+2.22\%	-5.53\%
Loss Cost	2015.2	$0.184(\mathrm{Cl}=+/-0.367 ; ~ p=0.287)$	0.218 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000$)	$0.008(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.085(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.116$)	$-0.243(\mathrm{Cl}=+/-0.375 ; \mathrm{p}=0.176)$	0.983	+20.16\%	-5.77\%
Loss Cost	2016.1	$-0.059(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.218 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000$)	$0.008(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.085(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.116)$	$N A(C l=+/-N A ; p=N A)$	0.982	-5.77\%	-5.77\%
Loss Cost	2016.2	$-0.062(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.214(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.096 ($\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.101$)	$\mathrm{NA}(\mathrm{Cl}=+$-NA; $\mathrm{p}=\mathrm{NA})$	0.983	-6.05\%	-6.05\%
Severity	2011.1	0.017 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.113$)	$0.041(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.115$)	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.075$)	$0.172(\mathrm{Cl}=+/-0.170 ; \mathrm{p}=0.048)$	$-0.006(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.757)$	0.685	+1.67\%	+1.09\%
Severity	2011.2	0.017 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.160$)	$0.041(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.128)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.083)$	$0.173(\mathrm{Cl}=+/-0.176 ; \mathrm{p}=0.054)$	$-0.007(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.744)$	0.659	+1.74\%	+1.07\%
Severity	2012.1	0.020 ($\mathrm{C}=+/-0.030 ; \mathrm{p}=0.169$)	$0.039(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.170)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.089)$	$0.176(\mathrm{Cl}=+/-0.182 ; ~ \mathrm{p}=0.057$)	$-0.010(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.650)$	0.651	+2.05\%	+1.00\%
Severity	2012.2	$0.034(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.058$)	0.048 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.094$)	$-0.003(\mathrm{Cl}=+/-0.003 ; p=0.062)$	$0.183(\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.043)$	$-0.027(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.290)$	0.684	+3.42\%	+0.68\%
Severity	2013.1	0.053 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.014$)	$0.038(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.165)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.044)$	$0.198(\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.025$)	$-0.049(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.083)$	0.734	+5.41\%	+0.38\%
Severity	2013.2	$0.076(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.005$)	0.048 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.079)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.026)$	$0.206(\mathrm{Cl}=+/-0.160 ; \mathrm{p}=0.016$)	$-0.076(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.024)$	0.758	+7.92\%	+0.02\%
Severity	2014.1	0.085 ($\mathrm{Cl}=+/-0.0699 \mathrm{p}=0.020$)	0.045 ($\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.117$)	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.030)$	0.210 ($\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.019$)	$-0.086(\mathrm{Cl}=+/-0.084 ; p=0.045)$	0.725	+8.92\%	-0.06\%
Severity	2014.2	$0.122(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.026$)	$0.053(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.083)$	$-0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.026)$	0.216 ($\mathrm{Cl}=+/-0.170 ; \mathrm{p}=0.017$)	$-0.125(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.040)$. 698	+12.98\%	-0.33\%
Severity	2015.1	$0.124(\mathrm{Cl}=+/-0.197 ; \mathrm{p}=0.190)$	0.053 ($\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.111$)	$-0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.034)$	0.216 ($\mathrm{Cl}=+/-0.182 ; \mathrm{p}=0.025$)	$-0.128(\mathrm{Cl}=+/-0.210 ; \mathrm{p}=0.206)$	634	+13.22\%	-0.33\%
Severity	2015.2	0.230 ($\mathrm{Cl}=+/-0.649 ; p=0.444$)	$0.058(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.124)$	$-0.004(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.041)$	0.220 ($\mathrm{Cl}=+/-0.195 ; \mathrm{p}=0.031$)	$-0.235(\mathrm{Cl}=+/-0.663 ; \mathrm{p}=0.443)$	0.552	+25.85\%	-0.50\%
Severity	2016.1	$-0.005(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.712)$	$0.058(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.124)$	$-0.004(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.041)$	0.220 ($\mathrm{Cl}=+/-0.195 ; \mathrm{p}=0.031$)	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.566	-0.50\%	-0.50\%
Severity	2016.2	$-0.014(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.347)$	0.045 ($\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.213$)	$-0.004(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.026)$	$0.254(\mathrm{Cl}=+/-0.195 ; ~ \mathrm{P}=0.017$)	$\mathrm{NA}(\mathrm{Cl}=+$-NA; $\mathrm{p}=\mathrm{NA})$	0.563	-1.37\%	-1.37\%
Frequency	2011.1	$0.008(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.278)$	$0.139(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.106(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.077)$	$-0.068(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	0.978	+0.78\%	-5.85\%
Frequency	2011.2	$0.013(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.112)$	$0.144(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.102(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.083)$	$-0.075(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.980	+1.32\%	-6.02\%
Frequency	2012.1	$0.012(\mathrm{Cl}=+/-0.020 ; p=0.239)$	0.145 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.104(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.088)$	$-0.073(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	0.979	+1.16\%	-5.99\%
Frequency	2012.2	$0.007(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.578)$	0.141 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.107(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.086)$	$-0.067(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.001)$	0.980	+0.65\%	-5.87\%
Frequency	2013.1	$-0.013(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.299)$	0.152 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.121(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.025$)	$-0.045(\mathrm{Cl}=+/-0.035 ; p=0.014)$	0.986	-1.24\%	-5.59\%
Frequency	2013.2	$-0.023(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.139)$	0.147 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000$)	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.125(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.022)$	$-0.033(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.111)$	0.987	-2.29\%	-5.44\%
Frequency	2014.1	$-0.024(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.263)$	0.147 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000$)	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.125(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.028)$	$-0.032(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.231)$	0.986	-2.40\%	-5.43\%
Frequency	2014.2	$-0.019(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.577)$	0.149 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.124(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.037)$	$-0.038(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.324)$	0.985	-1.83\%	-5.47\%
Frequency	2015.1	$-0.102(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.071)$	0.158 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000$)	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.137(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.015)$	0.049 ($\mathrm{Cl}=+/-0.120 ; p=0.387$)	0.988	-9.72\%	-5.21\%
Frequency	2015.2	$-0.046(\mathrm{Cl}=+/-0.372 ; \mathrm{p}=0.785)$	$0.160(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.135(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.023)$	$-0.008(\mathrm{Cl}=+/-0.380 ; \mathrm{p}=0.962)$	0.987	-4.52\%	-5.30\%
Frequency	2016.1	$-0.054(\mathrm{Cl}=+/-0.017 ; p=0.000)$	0.160 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.135(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.023)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.986	-5.30\%	-5.30\%
Frequency	2016.2	$-0.049(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.169(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+$ +-0.002; $\mathrm{p}=0.000$)	$-0.158(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.009)$	$\mathrm{NA}(\mathrm{Cl}=+/$-NA; $\mathrm{p}=\mathrm{NA})$	0.989	-4.74\%	-4.74\%

Coverage $=B 1$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, scalar_level_change, seasonality, mobility
Scalar Level Change Start Date $=2015-01-01$

Fit	Start Date	Time	Seasonality	Mobility	Scalar Shift	Adjusted R^2	Implied Trend Rate
Loss Cost	2011.1	$-0.038(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.190 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.183 ($\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.000$)	0.956	-3.76\%
Loss Cost	2011.2	$-0.039(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.187(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$0.182(\mathrm{Cl}=+/-0.076 ; p=0.000)$	0.958	-3.87\%
Loss Cost	2012.1	$-0.043(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.198(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.183(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.000)$	0.967	-4.19\%
Loss Cost	2012.2	$-0.043(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.194(\mathrm{Cl}=+/-0.040 ; p=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.179(\mathrm{Cl}=+/-0.070 ; p=0.000)$	0.969	-4.25\%
Loss Cost	2013.1	-0.046 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	$0.204(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.170 ($\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.000)$	0.977	-4.48\%
Loss Cost	2013.2	$-0.046(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.203(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.166(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.000)$	0.977	-4.49\%
Loss Cost	2014.1	$-0.047(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.206(\mathrm{Cl}=+/-0.040 ; p=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.155(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.001)$	0.976	-4.54\%
Loss Cost	2014.2	-0.047 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.215 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.195(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.001)$	0.980	-4.58\%
Loss Cost	2015.1	$-0.047(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.215 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$N A(C l=+/-N A ; p=N A)$	0.980	-4.58\%
Loss Cost	2015.2	-0.048 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.213 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$N A(C l=+/-N A ; p=N A)$	0.980	-4.68\%
Loss Cost	2016.1	$-0.051(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	0.220 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.979	-4.96\%
Loss Cost	2016.2	$-0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.219 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.978	-5.02\%
Severity	2011.1	0.015 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.082$)	$0.051(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.078)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.196)$	$0.034(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.506)$	0.622	+1.49\%
Severity	2011.2	$0.015(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.084)$	$0.052(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.080)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.219)$	$0.035(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.512)$	0.595	+1.55\%
Severity	2012.1	$0.016(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.081)$	0.049 ($\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.120)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.269)$	$0.034(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.524)$	0.588	+1.66\%
Severity	2012.2	$0.018(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.054)$	$0.057(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.069)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.281)$	0.045 ($\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.400)$	0.625	+1.81\%
Severity	2013.1	$0.020(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.035)$	0.049 ($\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.124)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.363)$	$0.053(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.318)$	0.652	+2.03\%
Severity	2013.2	$0.021(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.034)$	$0.056(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.094)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.362)$	$0.069(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.225)$	0.642	+2.07\%
Severity	2014.1	$0.020(\mathrm{Cl}=+/-0.020 ; p=0.046)$	$0.057(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.104)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.369)$	$0.063(\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.312)$	0.592	+2.04\%
Severity	2014.2	$0.020(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.056)$	$0.064(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.102)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.365)$	0.090 ($\mathrm{Cl}=+/-0.176 ; \mathrm{p}=0.290$)	0.521	+2.02\%
Severity	2015.1	0.020 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.056$)	$0.064(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.102)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.365)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.473	+2.02\%
Severity	2015.2	$0.019(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.104)$	$0.060(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.142)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.376)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.364	+1.87\%
Severity	2016.1	$0.017(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.191)$	$0.063(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.164)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.386)$	$N A(C l=+/-N A ; p=N A)$	0.326	+1.74\%
Severity	2016.2	$0.015(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.304)$	$0.058(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.231)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.409)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.172	+1.51\%
Frequency	2011.1	$-0.053(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.140 ($\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.149(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.014)$	0.937	-5.17\%
Frequency	2011.2	-0.055 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$0.134(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.148(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.015)$	0.939	-5.33\%
Frequency	2012.1	$-0.059(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.149 ($\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.149(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.010)$	0.949	-5.75\%
Frequency	2012.2	$-0.061(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.137(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.134(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.010)$	0.961	-5.95\%
Frequency	2013.1	-0.066 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	$0.156(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.117(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.003)$	0.980	-6.38\%
Frequency	2013.2	$-0.066(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.147(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.097(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.009)$	0.984	-6.42\%
Frequency	2014.1	$-0.067(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.149(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.092(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.023)$	0.982	-6.45\%
Frequency	2014.2	$-0.067(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.152(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.105(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.049)$	0.982	-6.46\%
Frequency	2015.1	$-0.067(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.152(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$N A(C l=+/-N A ; p=N A)$	0.981	-6.46\%
Frequency	2015.2	-0.066 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.153(\mathrm{Cl}=+/-0.050 ; p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$N A(C l e+/-N A ; p=N A)$	0.980	-6.43\%
Frequency	2016.1	-0.068 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.157(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$N A(C l e+/-N A ; p=N A)$	0.977	-6.59\%
Frequency	2016.2	-0.066 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.161(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.975	-6.43\%

Coverage $=B 1$
End Trend Period $=2022$
Excluded Points = NA
Parameters Included: time, scolar_level_change, trend_level_ change, seasonality, mobility
Future Trend Start Date $=$ 2016-04-01

Fit	Start Date	Time	Seasonality	Mobility	Scalar Shift	Trend Shift	Adjusted ${ }^{\wedge}$ 2	Implied Past Trend Rate	Implied Future
Loss Cost	2011.1	-0.002 (CI $=+/-0.023 ; \mathrm{p}=0.882$)	$0.188(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.096 ($\mathrm{Cl}=+/-0.077 \% \mathrm{p}=0.017$)	-0.046 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.002$)	0.974	-0.16\%	4.61\%
Loss Cost	2011.2	$0.004(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.766$)	$0.190(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.085(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.046)$	$-0.052(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.003)$	0.974	+0.40\%	-4.65\%
Loss Cost	2012.1	$-0.005(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.788)$	0.193 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.102(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.037)$	$-0.043(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.030)$	0.974	-0.46\%	-4.64\%
Loss Cost	2012.2	$0.002(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.939)$	0.195 ($\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.091(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.090)$	$-0.050(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.049)$	0.974	+0.17\%	-4.68\%
Loss Cost	2013.1	$-0.023(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.428)$	$0.202(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.130(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.040)$	$-0.024(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.439)$	0.976	-2.31\%	-4.62\%
Loss Cost	2013.2	$-0.019(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.637)$	$0.202(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.124(\mathrm{Cl}=+/-0.145 ; ~ p=0.086)$	$-0.029(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.492)$	0.976	-1.86\%	-4.64\%
Loss Cost	2014.1	$-0.037(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.499)$	0.205 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.143 ($\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.090$)	$-0.010(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.861)$	0.975	-3.64\%	-4.59\%
Loss Cost	2014.2	$0.001(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.982)$	$0.214(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.143(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.072)$	$-0.051(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.394)$	0.979	+0.13\%	-4.81\%
Loss Cost	2015.1	$0.001(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.982)$	$0.214(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$-0.051(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.394)$	0.980	+0.13\%	-4.81\%
Loss Cost	2015.2	$0.131(\mathrm{Cl}=+/-0.389 ; \mathrm{p}=0.471)$	0.220 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	0.009 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$-0.182(\mathrm{Cl}=+/-0.395 ; \mathrm{p}=0.330)$	0.980	+13.99\%	-4.96\%
Loss Cost	2016.1	$-0.051(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.220(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.979	-4.96\%	-4.96\%
Loss Cost	2016.2	$-0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.219(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$-NA; $\mathrm{p}=\mathrm{NA})$	0.978	-5.02\%	-5.02\%
Severity	2011.1	-0.015 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.442$)	$0.053(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.057)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.350)$	$0.104(\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.114)$	0.036 (Cl $=+/-0.044 ; \mathrm{p}=0.098)$	0.658	-1.44\%	+2.21\%
Severity	2011.2	$-0.022(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.341)$	0.050 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.080$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.376)$	$0.119(\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.099)$	0.045 ($\mathrm{C}=+/-0.053 ; \mathrm{p}=0.094$)	0.638	-2.19\%	+2.27\%
Severity	2012.1	$-0.033(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.275)$	$0.054(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.073)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.370)$	$0.139(\mathrm{Cl}=+/-0.164 ; \mathrm{p}=0.091)$	0.055 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.095$)	0.634	-3.23\%	+2.28\%
Severity	2012.2	$-0.021(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.591)$	$0.057(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.071)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.364)$	$0.119(\mathrm{Cl}=+/-0.186 ; \mathrm{p}=0.192)$	$0.042(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.307)$	0.628	-2.03\%	+2.21\%
Severity	2013.1	$0.003(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.959)$	$0.051(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.129)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.394)$	$0.083(\mathrm{Cl}=+/-0.223 ; \mathrm{p}=0.435)$	0.019 ($\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.738$)	0.630	+0.27\%	+2.15\%
Severity	2013.2	$0.042(\mathrm{Cl}=+/-0.147 ; \mathrm{p}=0.546)$	0.055 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.108$)	$-0.001(\mathrm{Cl}=+/-0.003 ; p=0.364)$	$0.036(\mathrm{Cl}=+/-0.254 ; \mathrm{p}=0.766$)	$-0.023(\mathrm{Cl}=+/-0.154 ; \mathrm{p}=0.753)$	0.617	+4.30\%	+1.94\%
Severity	2014.1	$0.039(\mathrm{Cl}=+/-0.205 ; \mathrm{p}=0.684)$	0.056 ($\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.138$)	$-0.001(\mathrm{Cl}=+/-0.003 ; p=0.383)$	$0.038(\mathrm{Cl}=+/-0.299 ; \mathrm{p}=0.784)$	$-0.020(\mathrm{Cl}=+/-0.214 ; \mathrm{p}=0.842)$	0.559	+4.00\%	+1.95\%
Severity	2014.2	0.068 ($\mathrm{C}=+/-0.234 ; \mathrm{p}=0.539$)	$0.062(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.125)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.363)$	$0.039(\mathrm{Cl}=+/-0.310 ; \mathrm{p}=0.787)$	$-0.050(\mathrm{Cl}=+/-0.245 ; \mathrm{p}=0.663)$	0.487	+6.98\%	+1.78\%
Severity	2015.1	0.068 ($\mathrm{C}=+/-0.234 ; \mathrm{p}=0.539)$	$0.062(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.125)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.363)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; p $=\mathrm{NA}$)	$-0.050(\mathrm{Cl}=+/-0.245 ; \mathrm{p}=0.663)$	0.435	+6.98\%	+1.78\%
Severity	2015.2	0.093 ($\mathrm{Cl}=+/-0.783 ; \mathrm{p}=0.797$)	$0.063(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.164)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.386)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.076 ($\mathrm{Cl}=+/-0.795 ; \mathrm{p}=0.836$)	0.304	+9.74\%	+1.74\%
Severity	2016.1	0.017 (Cl $=+/-0.027 ; \mathrm{p}=0.191$)	$0.063(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.164)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.386)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.326	+1.74\%	+1.74\%
Severity	2016.2	0.015 ($\mathrm{C}=+/-0.031 ; \mathrm{p}=0.304$)	$0.058(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.231)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.409)$	NA ($\mathrm{Cl}=+/-$ NA; $\mathrm{p}=\mathrm{NA}$)	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.172	+1.51\%	+1.51\%
Frequency	2011.1	$0.013(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.356)$	$0.135(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.007(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.872)$	$-0.082(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	0.974	+1.30\%	-6.68\%
Frequency	2011.2	0.026 ($\mathrm{C}=+/-0.033 ; \mathrm{p}=0.116$)	0.140 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000$)	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.033(\mathrm{Cl}=+/-0.100 ; \mathrm{p}=0.491)$	-0.096 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000$)	0.977	+2.64\%	-6.76\%
Frequency	2012.1	$0.028(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.186)$	$0.139(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.038(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.500)$	$-0.098(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	0.976	+2.87\%	-6.77\%
Frequency	2012.2	$0.022(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.415$)	$0.138(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.028(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.659)$	$-0.092(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.005)$	0.975	+2.25\%	-6.73\%
Frequency	2013.1	-0.026 ($\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.426$)	$0.151(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$0.047(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.479)$	$-0.042(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.225)$	0.981	-2.58\%	-6.62\%
Frequency	2013.2	$-0.061(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.157)$	0.147 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000$)	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.089(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.227)$	$-0.006(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.893)$	0.983	-5.91\%	-6.46\%
Frequency	2014.1	$-0.076(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.197)$	0.150 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$0.104(\mathrm{Cl}=+/-0.177 ; ~ p=0.224)$	$0.010(\mathrm{Cl}=+/-0.127 ; p=0.866)$	0.981	-7.35\%	-6.41\%
Frequency	2014.2	$-0.066(\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.321)$	$0.152(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.105(\mathrm{Cl}=+/-0.186 ; \mathrm{p}=0.241)$	$-0.001(\mathrm{Cl}=+/-0.147 ; \mathrm{p}=0.993)$	0.980	-6.41\%	-6.47\%
Frequency	2015.1	-0.066 ($\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.321$)	$0.152(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.001(\mathrm{Cl}=+/-0.147 ; \mathrm{p}=0.993)$	0.980	-6.41\%	-6.47\%
Frequency	2015.2	$0.038(\mathrm{Cl}=+/-0.463 ; p=0.858)$	0.157 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000$)	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$N A(C l=+/-N A ; p=N A)$	$-0.106(\mathrm{Cl}=+/-0.470 ; \mathrm{p}=0.625$)	0.978	+3.88\%	-6.59\%
Frequency	2016.1	-0.068 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.157(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	NA ($\mathrm{Cl}=+$ +/NA; $\mathrm{p}=\mathrm{NA}$)	$N A(C I=+/-N A ; p=N A)$	0.977	-6.59\%	-6.59\%
Frequency	2016.2	-0.066 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.161(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.000$)	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	NA $(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	0.975	-6.43\%	-6.43\%

Coverage $=B 1$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, scalar_level_change, seasonality, mobility
Scalar Level Change Start Date $=2015-08-01$

Fit	Start Date	Time	Seasonality	Mobility	Scalar Shift	Adjusted R^2	Implied Trend Rate
Loss Cost	2011.1	-0.033 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.176 ($\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.139 ($\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.011$)	0.928	-3.23\%
Loss Cost	2011.2	$-0.035(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.171(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.144(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.009)$	0.932	-3.45\%
Loss Cost	2012.1	-0.039 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.183(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.148 ($\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.005$)	0.942	-3.85\%
Loss Cost	2012.2	$-0.041(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.177(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.148 ($\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.005$)	0.946	-4.03\%
Loss Cost	2013.1	-0.045 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.190 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.142 ($\mathrm{Cl}=+/-0.087 ; ~ p=0.003)$	0.958	-4.37\%
Loss Cost	2013.2	$-0.046(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.186(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.135 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.005$)	0.960	-4.46\%
Loss Cost	2014.1	$-0.047(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.195 ($\mathrm{Cl}=+/-0.050 ; p=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.121(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.011)$	0.963	-4.61\%
Loss Cost	2014.2	-0.047 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.193 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.114 ($\mathrm{Cl}=+/-0.100 ; p=0.029$)	0.963	-4.62\%
Loss Cost	2015.1	-0.049 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.213 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.032(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.478)$	0.979	-4.74\%
Loss Cost	2015.2	$-0.051(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.220 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.270 ($\mathrm{Cl}=+/-0.587 ; \mathrm{p}=0.330$)	0.980	-4.96\%
Loss Cost	2016.1	$-0.051(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	0.220 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$N A(C I=+/-N A ; p=N A)$	0.979	-4.96\%
Loss Cost	2016.2	$-0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.219 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.978	-5.02\%
Severity	2011.1	$0.011(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.184)$	0.048 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.080)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.161)$	$0.059(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.270)$	0.637	+1.15\%
Severity	2011.2	$0.012(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.187)$	0.050 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.085$)	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.183)$	$0.058(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.294)$	0.610	+1.21\%
Severity	2012.1	$0.013(\mathrm{Cl}=+/-0.020 ; p=0.177)$	0.046 ($\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.125$)	-0.002 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.231)$	$0.057(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.317)$	0.602	+1.32\%
Severity	2012.2	0.016 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.110$)	$0.054(\mathrm{Cl}=+/-0.060 ; p=0.078)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.262)$	$0.058(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.298)$	0.634	+1.58\%
Severity	2013.1	$0.018(\mathrm{Cl}=+/-0.020 ; p=0.072)$	$0.044(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.149)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.354)$	$0.062(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.264)$	0.658	+1.83\%
Severity	2013.2	$0.019(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.067)$	0.049 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.128)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.377)$	$0.068(\mathrm{Cl}=+/-0.117 ; ~ p=0.232)$	0.641	+1.92\%
Severity	2014.1	0.018 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.089)$	$0.052(\mathrm{Cl}=+/-0.070 ; p=0.131)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.369)$	$0.063(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.301)$	0.593	+1.86\%
Severity	2014.2	$0.018(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.102)$	$0.053(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.147)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.388)$	$0.066(\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.332)$	0.514	+1.87\%
Severity	2015.1	$0.018(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.122)$	$0.061(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.133)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.369)$	$0.036(\mathrm{Cl}=+/-0.185 ; ~ p=0.676)$	0.435	+1.82\%
Severity	2015.2	$0.017(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.191)$	$0.063(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.164)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.386)$	0.112 ($\mathrm{Cl}=+/-1.180 ; \mathrm{p}=0.836$)	0.304	+1.74\%
Severity	2016.1	$0.017(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.191)$	$0.063(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.164)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.386)$	$N A(C I=+/-N A ; p=N A)$	0.326	+1.74\%
Severity	2016.2	$0.015(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.304)$	$0.058(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.231)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.409)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.172	+1.51\%
Frequency	2011.1	$-0.044(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.127(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.001)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.080 ($\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.243$)	0.919	-4.33\%
Frequency	2011.2	-0.047 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000$)	$0.121(\mathrm{Cl}=+/-0.070 ; p=0.002)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.085 ($\mathrm{Cl}=+/-0.139 ; \mathrm{p}=0.213$)	0.922	-4.60\%
Frequency	2012.1	$-0.052(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.136(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.001)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.092(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.161)$	0.932	-5.11\%
Frequency	2012.2	$-0.057(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.124(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.001)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.090 ($\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.125$)	0.948	-5.53\%
Frequency	2013.1	$-0.063(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.146 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.080(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.075)$	0.971	-6.09\%
Frequency	2013.2	$-0.065(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.137(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.067 ($\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.097$)	0.978	-6.27\%
Frequency	2014.1	$-0.066(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.142(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$0.058(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.160)$	0.977	-6.35\%
Frequency	2014.2	-0.066 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.139 ($\mathrm{Cl}=+/-0.050 ; p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.048 ($\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.292$)	0.977	-6.37\%
Frequency	2015.1	$-0.067(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.152(\mathrm{Cl}=+/-0.050 ; p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.937)$	0.980	-6.44\%
Frequency	2015.2	-0.068 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.157(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$0.158(\mathrm{Cl}=+/-0.697 ; \mathrm{p}=0.625)$	0.978	-6.59\%
Frequency	2016.1	-0.068 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.157(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.977	-6.59\%
Frequency	2016.2	-0.066 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.161(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$N A(C l e+/-N A ; p=N A)$	0.975	-6.43\%

Coverage $=B 1$
End Trend Period $=2022$
Excluded Points = NA
Parameters Included: time, scolar_level_change, trend_level_change, seasonality, mobility
Scalar_ Level Change Start Date $=2015-08-01$
Future Trend Start Date $=$ 2016-04-01

Fit	Start Date	Time	Seasonality	Mobility	Scalar Shift	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.010 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.319$)	$0.181(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.057 ($\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.140$)	$-0.058(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.968	+1.04\%	-4.66\%
Loss Cost	2011.2	$0.018(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.166$)	$0.185(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.043 ($\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.285$)	$-0.065(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.970	+1.77\%	-4.68\%
Loss Cost	2012.1	0.016 ($\mathrm{C}=+/-0.032 ; \mathrm{p}=0.316$)	$0.186(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.046 ($\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.296$)	$-0.064(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.001)$	0.968	+1.58\%	-4.69\%
Loss Cost	2012.2	$0.027(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.193)$	0.190 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.029(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.553)$	$-0.075(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.002)$	0.970	2.70\%	-4.71\%
Loss Cost	2013.1	$0.019(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.476)$	0.192 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.039(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.481)$	$-0.068(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.025)$	0.969	+1.94\%	-4.72\%
Loss Cost	2013.2	$0.041(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.313)$	0.197 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.852)$	$-0.089(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.041)$	0.969	+4.13\%	-4.75\%
Loss Cost	2014.1	$0.053(\mathrm{Cl}=+/-0.135 ; \mathrm{p}=0.411)$	0.196 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.183 ; \mathrm{p}=0.995)$	$-0.101(\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.130)$	0.967	+5.40\%	-4.74\%
Loss Cost	2014.2	0.315 ($\mathrm{C}=+/-0.234 ; \mathrm{p}=0.013$)	$0.221(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.240(\mathrm{Cl}=+/-0.240 ; \mathrm{p}=0.050)$	-0.366 ($\mathrm{Cl}=+/-0.236 ; \mathrm{p}=0.006$)	0.980	+37.02\%	-4.99\%
Loss Cost	2015.1	$0.271(\mathrm{Cl}=+/-0.778 ; \mathrm{p}=0.455$)	0.220 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.208(\mathrm{Cl}=+/-0.593 ; \mathrm{p}=0.452)$	$-0.322(\mathrm{Cl}=+/-0.784 ; \mathrm{p}=0.381)$	0.979	+31.17\%	-4.96\%
Loss Cost	2015.2	$-0.051(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.220 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.270 ($\mathrm{Cl}=+/-0.587 ; \mathrm{p}=0.330$)	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.980	-4.96\%	-4.96\%
Loss Cost	2016.1	$-0.051(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.220 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; p $=\mathrm{NA}$)	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.979	-4.96\%	-4.96\%
Loss Cost	2016.2	$-0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.219 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.978	-5.02\%	-5.02\%
Severity	2011.1	$-0.010(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.540)$	0.046 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.087$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.342)$	$0.099(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.094$)	$0.028(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.129)$	0.664	-0.96\%	+1.89\%
Severity	2011.2	$-0.016(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.411)$	0.042 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.131$)	$-0.001(\mathrm{Cl}=+/-0.003 ; p=0.369)$	$0.112(\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.084)$	$0.035(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.118)$	0.644	-1.58\%	+1.90\%
Severity	2012.1	$-0.022(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.367)$	$0.044(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.128)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.370)$	$0.122(\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.085)$	$0.041(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.128)$	0.636	-2.17\%	+1.89\%
Severity	2012.2	$-0.011(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.720)$	$0.048(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.118)$	$-0.001(\mathrm{Cl}=+/-0.003 ; p=0.364)$	$0.105(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.180)$	0.030 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.374$)	0.631	-1.12\%	+1.87\%
Severity	2013.1	$0.008(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.844)$	$0.044(\mathrm{Cl}=+/-0.065 ; ~ \mathrm{p}=0.165)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.392)$	$0.078(\mathrm{Cl}=+/-0.181 ; \mathrm{p}=0.374)$	0.010 ($\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.807$)	0.635	+0.83\%	+1.89\%
Severity	2013.2	0.043 ($\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.486$)	$0.052(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.129)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.366)$	$0.034(\mathrm{Cl}=+/-0.219 ; \mathrm{p}=0.744)$	$-0.025(\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.691)$	0.618	+4.41\%	+1.84\%
Severity	2014.1	$0.034(\mathrm{Cl}=+/-0.210 ; \mathrm{p}=0.730)$	$0.053(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.146)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.383)$	$0.044(\mathrm{Cl}=+/-0.287 ; \mathrm{p}=0.746)$	$-0.016(\mathrm{Cl}=+/-0.212 ; \mathrm{p}=0.873)$	0.560	+3.47\%	+1.84\%
Severity	2014.2	$0.150(\mathrm{Cl}=+/-0.469 ; \mathrm{p}=0.496$)	$0.064(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.132)$	$-0.002(\mathrm{Cl}=+/-0.003 ; p=0.355)$	$-0.062(\mathrm{Cl}=+/-0.482 ; \mathrm{p}=0.781)$	$-0.133(\mathrm{Cl}=+/-0.474 ; \mathrm{p}=0.549)$	0.488	+16.18\%	+1.72\%
Severity	2015.1	$0.120(\mathrm{Cl}=+/-1.565 ; \mathrm{p}=0.867)$	0.063 ($\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.164$)	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.386)$	$-0.041(\mathrm{Cl}=+/-1.192 ; \mathrm{p}=0.941)$	$-0.103(\mathrm{Cl}=+/-1.576 ; \mathrm{p}=0.887)$	0.379	+12.79\%	+1.74\%
Severity	2015.2	$0.017(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.191$)	0.063 ($\mathrm{Cl}=+/-0.0944 ; \mathrm{p}=0.164$)	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.386)$	$0.112(\mathrm{Cl}=+/-1.180 ; \mathrm{p}=0.836)$	$N \mathrm{~N}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.304	+1.74\%	+1.74\%
Severity	2016.1	0.017 ($\mathrm{Cl}=+/-0.027$; $\mathrm{p}=0.191$)	$0.063(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.164)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.386)$	NA ($\mathrm{Cl}=+/$-NA; p $=\mathrm{NA}$)	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.326	+1.74\%	+1.74\%
Severity	2016.2	0.015 ($\mathrm{C}=+/-0.031 ; \mathrm{p}=0.304$)	$0.058(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.231)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.409)$	NA ($\mathrm{Cl}=+$ + $\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.172	+1.51\%	+1.51\%
Frequency	2011.1	0.020 ($\mathrm{C}=+/-0.023 ; \mathrm{p}=0.089$)	0.136 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	-0.043 ($\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.307$)	$-0.086(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	0.976	+2.02\%	-6.43\%
Frequency	2011.2	$0.033(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.016)$	0.143 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.069(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.104)$	$-0.100(\mathrm{Cl}=+/-0.029 ; p=0.000)$	0.980	+3.41\%	-6.46\%
Frequency	2012.1	$0.038(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.028)$	0.142 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000$)	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.076 ($\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.103$)	$-0.104(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	0.979	+3.83\%	-6.46\%
Frequency	2012.2	$0.038(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.085$)	0.142 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.076(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.145)$	$-0.105(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000)$	0.979	+3.86\%	-6.46\%
Frequency	2013.1	$0.011(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.674)$	0.148 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.039(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.474)$	$-0.078(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.010)$	0.981	+1.10\%	-6.48\%
Frequency	2013.2	$-0.003(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.945)$	0.145 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.021(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.743)$	$-0.064(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.121)$	0.981	-0.27\%	-6.47\%
Frequency	2014.1	$0.019(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.764)$	0.143 ($\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.044(\mathrm{Cl}=+/-0.179 ; \mathrm{p}=0.602)$	$-0.085(\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.186)$	0.979	+1.87\%	-6.46\%
Frequency	2014.2	$0.165(\mathrm{Cl}=+/-0.277 ; \mathrm{p}=0.217)$	$0.157(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.178(\mathrm{Cl}=+/-0.285 ; \mathrm{p}=0.197)$	$-0.233(\mathrm{Cl}=+/-0.280 ; \mathrm{p}=0.094)$	0.981	+17.93\%	-6.60\%
Frequency	2015.1	$0.151(\mathrm{Cl}=+/-0.925 ; \mathrm{p}=0.724$)	$0.157(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.168(\mathrm{Cl}=+/-0.704 ; \mathrm{p}=0.608)$	$-0.219(\mathrm{Cl}=+/-0.932 ; \mathrm{p}=0.612)$	0.978	+16.29\%	-6.59\%
Frequency	2015.2	$-0.068(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.157 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000$)	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.158(\mathrm{Cl}=+/-0.697 ; \mathrm{p}=0.625$)	$\mathrm{NA}(\mathrm{Cl}=+$ - $\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.978	-6.59\%	-6.59\%
Frequency	2016.1	-0.068 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.157(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	$N A(C l=+/-N A ; p=N A)$	0.977	-6.59\%	-6.59\%
Frequency	2016.2	$-0.066(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.161(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+$ - NA; $\mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.975	-6.43\%	-6.43\%

Coverage $=B 1$
End Trend Period $=2022.2$
Excluded Points $=$ NA
Parameters Included: time, scalar_level_change, seasonality, mobility
Scalar Level Change Start Date $=2016-06-01$

Fit	Start Date	Time	Seasonality	Mobility	Scalar Shift	Adjusted R^2	Implied Trend Rate
Loss Cost	2011.1	$-0.021(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.038)$	0.173 ($\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.000$)	0.011 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.046 ($\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.444$)	0.901	-2.04\%
Loss Cost	2011.2	$-0.023(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.029)$	$0.169(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.055(\mathrm{Cl}=+/-0.127 ; p=0.371)$	0.904	-2.31\%
Loss Cost	2012.1	$-0.029(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.011$)	$0.181(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.069(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.253)$	0.913	-2.85\%
Loss Cost	2012.2	$-0.032(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.007)$	0.175 ($\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.077(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.206)$	0.919	-3.18\%
Loss Cost	2013.1	$-0.038(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.001)$	0.190 ($\mathrm{Cl}=+/-0.060 ; p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.085(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.133)$	0.934	-3.77\%
Loss Cost	2013.2	$-0.041(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.001)$	0.183 ($\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.085(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.123)$	0.941	-4.05\%
Loss Cost	2014.1	-0.045 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000$)	0.197 ($\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.080(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.120)$	0.949	-4.45\%
Loss Cost	2014.2	-0.047 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.191(\mathrm{Cl}=+/-0.060 ; p=0.000)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.073 ($\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.162)$	0.952	-4.57\%
Loss Cost	2015.1	$-0.051(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.214 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.036(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.296)$	0.980	-4.99\%
Loss Cost	2015.2	$-0.051(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.214(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.034(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.392)$	0.980	-5.00\%
Loss Cost	2016.1	$-0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.219 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.804)$	0.977	-5.02\%
Loss Cost	2016.2	$-0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.219 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.978	-5.02\%
Severity	2011.1	$0.009(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.277)$	0.048 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.077)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.168)$	$0.076(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.159)$	0.652	+0.92\%
Severity	2011.2	0.010 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.297)$	0.048 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.086)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.187)$	$0.075(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.184)$	0.625	+0.96\%
Severity	2012.1	$0.011(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.292)$	0.046 ($\mathrm{Cl}=+/-0.060 ; p=0.121$)	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.229)$	$0.073(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.215)$	0.615	+1.06\%
Severity	2012.2	$0.014(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.177)$	$0.053(\mathrm{Cl}=+/-0.060 ; p=0.082)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.276)$	$0.065(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.262)$	0.638	+1.42\%
Severity	2013.1	$0.017(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.119)$	0.045 ($\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.150$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.383)$	$0.061(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.294)$	0.654	+1.74\%
Severity	2013.2	0.019 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.112$)	0.048 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.142$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.420)$	$0.061(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.308)$	0.630	+1.88\%
Severity	2014.1	$0.017(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.168)$	$0.053(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.126)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.378)$	$0.059(\mathrm{Cl}=+/-0.127 ; \mathrm{p}=0.337)$	0.589	+1.70\%
Severity	2014.2	$0.017(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.194)$	$0.053(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.155)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.395)$	$0.057(\mathrm{Cl}=+/-0.135 ; \mathrm{p}=0.371)$	0.508	+1.68\%
Severity	2015.1	0.015 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.257)$	$0.062(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.118)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.340)$	$0.042(\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.526)$	0.447	+1.50\%
Severity	2015.2	$0.015(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.282)$	$0.061(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.152)$	$-0.002(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.365)$	$0.038(\mathrm{Cl}=+/-0.167 ; \mathrm{p}=0.620)$	0.318	+1.49\%
Severity	2016.1	0.015 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.304$)	$0.058(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.231)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.409)$	$0.052(\mathrm{Cl}=+/-0.247 ; ~ p=0.643)$	0.270	+1.51\%
Severity	2016.2	0.015 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.304$)	$0.058(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.231)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.409)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.172	+1.51\%
Frequency	2011.1	$-0.030(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.013$)	$0.125(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.002)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.030(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.668)$	0.914	-2.94\%
Frequency	2011.2	$-0.033(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.011$)	0.120 ($\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.003)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	-0.020 ($\mathrm{Cl}=+/-0.150 ; \mathrm{p}=0.782$)	0.915	-3.24\%
Frequency	2012.1	$-0.039(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.004)$	$0.134(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.001)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.959)$	0.923	-3.87\%
Frequency	2012.2	-0.046 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001$)	0.122 ($\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.001$)	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.854)$	0.940	-4.53\%
Frequency	2013.1	$-0.056(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.145 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.024(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.633)$	0.965	-5.42\%
Frequency	2013.2	$-0.060(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.135 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.025(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.574)$	0.974	-5.82\%
Frequency	2014.1	$-0.062(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.143 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.022(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.614)$	0.974	-6.04\%
Frequency	2014.2	-0.063 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.138(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$0.015(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.728)$	0.975	-6.15\%
Frequency	2015.1	$-0.066(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.152(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.006(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.874$)	0.980	-6.39\%
Frequency	2015.2	$-0.066(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.153(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.004(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.927$)	0.978	-6.39\%
Frequency	2016.1	-0.066 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.161(\mathrm{Cl}=+/-0.060 ; p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.038(\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.565$)	0.975	-6.43\%
Frequency	2016.2	-0.066 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.161(\mathrm{Cl}=+/-0.060 ; p=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.975	-6.43\%

Coverage $=B 1$
End Trend Period $=2022$
Excluded Points = NA
Parameters Included: time, scolar_level_change, trend_level_change, seasonality, mobility
Scalar_Level Change Start Date $=2016-06-01$
Future Trend Start Date $=$ 2016-04-01

Fit	Start Date	Time	Seasonality	Mobility	Scalar Shift	Trend Shift	Adjusted R^{\wedge} 2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	$0.017(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.054)$	$0.181(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.043(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.220)$	-0.066 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.967	+1.67\%	-4.83\%
Loss Cost	2011.2	$0.023(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.025)$	$0.186(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.035(\mathrm{Cl}=+1-0.072 ; \mathrm{p}=0.324)$	$-0.072(\mathrm{Cl}=+1-0.024 ; \mathrm{p}=0.000)$	0.969	+2.29\%	-4.85\%
Loss Cost	2012.1	$0.022(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.061$)	$0.186(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.035(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.347)$	$-0.072(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.968	+2.27\%	-4.85\%
Loss Cost	2012.2	$0.031(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.038)$	$0.191(\mathrm{Cl}=+/-0.039 ; p=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.026 ($\mathrm{Cl}=+$ +-0.079; $\mathrm{p}=0.491$)	$-0.081(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.000)$	0.970	+3.12\%	-4.87\%
Loss Cost	2013.1	$0.028(\mathrm{Cl}=+/-0.037 ; p=0.131)$	0.192 ($\mathrm{Cl}=+/-0.041 ; ~ \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.029(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.473)$	$-0.078(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.001)$	0.969	+2.80\%	-4.88\%
Loss Cost	2013.2	0.040 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.099)$	$0.197(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.019(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.646)$	$-0.091(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.002)$	0.970	+4.12\%	-4.90\%
Loss Cost	2014.1	0.045 ($\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.189)$	$0.196(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.017 ($\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.712$)	$-0.095(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.013)$	0.968	+4.56\%	-4.89\%
Loss Cost	2014.2	$0.094(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.072)$	$0.204(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.100 ; \mathrm{p}=0.925$)	$-0.144(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.012)$	0.972	+9.82\%	-4.93\%
Loss Cost	2015.1	-0.030 ($\mathrm{Cl}=+/-0.164 ; \mathrm{p}=0.689)$	$0.214(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.029(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.522)$	$-0.021(\mathrm{Cl}=+/-0.164 ; \mathrm{p}=0.780)$	0.979	-2.98\%	-5.00\%
Loss Cost	2015.2	$0.084(\mathrm{Cl}=+/-0.584 ; \mathrm{p}=0.751$)	$0.219(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.804)$	$-0.136(\mathrm{Cl}=+/-0.585 ; \mathrm{p}=0.612)$	0.978	+8.81\%	-5.02\%
Loss Cost	2016.1	$-0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.219(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.804)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.977	-5.02\%	-5.02\%
Loss Cost	2016.2	$-0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.219(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	NA ($\mathrm{Cl}=+$ +/NA; p $=$ NA $)$	NA ($\mathrm{Cl}=+/$-NA; $\mathrm{p}=\mathrm{NA}$)	0.978	-5.02\%	-5.02\%
Severity	2011.1	$0.001(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.935$)	0.046 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.092)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.331)$	$0.077(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.159)$	0.015 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.385$)	0.648	+0.10\%	+1.56\%
Severity	2011.2	$-0.001(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.945$)	$0.044(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.121)$	$-0.001(\mathrm{Cl}=+/-0.003 ; p=0.352)$	$0.080(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.164)$	$0.017(\mathrm{Cl}=+/-0.039 ; p=0.382)$	0.621	-0.10\%	+1.57\%
Severity	2012.1	$-0.002(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.921)$	$0.045(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.137)$	$-0.001(\mathrm{Cl}=+/-0.003 ; p=0.365)$	$0.081(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.181)$	$0.017(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.423)$	0.607	-0.18\%	+1.57\%
Severity	2012.2	$0.010(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.664)$	$0.051(\mathrm{Cl}=+/-0.063 ; p=0.103)$	$-0.001(\mathrm{Cl}=+/-0.003 ; p=0.341)$	$0.068(\mathrm{Cl}=+/-0.127 ; \mathrm{p}=0.270)$	$0.006(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.827$)	0.615	+0.98\%	+1.54\%
Severity	2013.1	0.026 ($\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.352$)	0.045 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.161$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.369)$	$0.053(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.399)$	$-0.010(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.729)$	0.633	+2.64\%	+1.59\%
Severity	2013.2	$0.048(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.196)$	$0.053(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.117)$	$-0.001(\mathrm{Cl}=+/-0.003 ; p=0.339)$	$0.037(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.575)$	$-0.033(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.394)$	0.624	+4.94\%	+1.55\%
Severity	2014.1	0.046 ($\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.376$)	$0.053(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.138)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.358)$	$0.038(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.593$)	$-0.031(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.560$)	0.567	+4.70\%	+1.55\%
Severity	2014.2	$0.075(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.363)$	$0.058(\mathrm{Cl}=+/-0.080 ; p=0.135)$	$-0.001(\mathrm{Cl}=+/-0.003 ; p=0.356)$	0.026 ($\mathrm{Cl}=+/-0.167 ; \mathrm{p}=0.742$)	$-0.060(\mathrm{Cl}=+/-0.176 ; \mathrm{p}=0.471)$	0.489	+7.75\%	+1.52\%
Severity	2015.1	0.025 ($\mathrm{Cl}=+/-0.323 ; \mathrm{p}=0.868$)	$0.062(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.140)$	$-0.002(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.363)$	$0.039(\mathrm{Cl}=+/-0.190 ; \mathrm{p}=0.657)$	$-0.010(\mathrm{Cl}=+/-0.323 ; \mathrm{p}=0.947)$	0.392	+2.50\%	+1.49\%
Severity	2015.2	$-0.081(\mathrm{Cl}=+/-1.165 ; p=0.879)$	$0.058(\mathrm{Cl}=+/-0.102 ; p=0.231)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.409)$	$0.052(\mathrm{Cl}=+/-0.247 ; \mathrm{p}=0.643)$	0.096 ($\mathrm{C}=+$ +-1.166; $\mathrm{p}=0.857$)	0.246	-7.76\%	+1.51\%
Severity	2016.1	0.015 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.304$)	$0.058(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.231)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.409)$	$0.052(\mathrm{Cl}=+/-0.247 ; \mathrm{p}=0.643)$	NA ($\mathrm{Cl}=+/$-NA; $\mathrm{p}=\mathrm{NA}$)	0.270	+1.51\%	+1.51\%
Severity	2016.2	0.015 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.304$)	$0.058(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.231)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.409)$	NA ($\mathrm{Cl}=+$ +-NA; $\mathrm{p}=\mathrm{NA}$)	$\mathrm{NA}(\mathrm{Cl}=+$ - NA; $\mathrm{p}=\mathrm{NA})$	0.172	+1.51\%	+1.51\%
Frequency	2011.1	$0.016(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.093)$	$0.135(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.034(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.378)$	$-0.081(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.975	+1.56\%	-6.29\%
Frequency	2011.2	$0.024(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.027)$	$0.142(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.045(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.231)$	$-0.089(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.978	+2.39\%	-6.32\%
Frequency	2012.1	$0.024(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.058)$	$0.141(\mathrm{Cl}=+/-0.040 ; p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	-0.046 ($\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.247$)	-0.090 ($\mathrm{Cl}=+/-0.030 ; p=0.000$)	0.977	+2.46\%	-6.32\%
Frequency	2012.2	$0.021(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.178)$	$0.140(\mathrm{Cl}=+/-0.043 ; p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	-0.042 ($\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.310$)	$-0.086(\mathrm{Cl}=+/-0.036 ; p=0.000)$	0.977	+2.12\%	-6.31\%
Frequency	2013.1	$0.002(\mathrm{Cl}=+/-0.036 ; p=0.925)$	0.147 ($\mathrm{Cl}=+/-0.040 ; p=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.025(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.530)$	$-0.067(\mathrm{Cl}=+/-0.039 ; p=0.002)$	0.981	+0.16\%	-6.37\%
Frequency	2013.2	$-0.008(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.730)$	$0.144(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	-0.017 ($\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.674$)	$-0.058(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.030)$	0.981	-0.79\%	-6.35\%
Frequency	2014.1	$-0.001(\mathrm{Cl}=+/-0.069 ; p=0.967)$	0.143 ($\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.021(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.636)$	$-0.064(\mathrm{Cl}=+/-0.070 ; p=0.070)$	0.979	-0.13\%	-6.34\%
Frequency	2014.2	0.019 ($\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.709$)	0.146 ($\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.030(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.543)$	$-0.085(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.120)$	0.978	+1.92\%	-6.36\%
Frequency	2015.1	$-0.055(\mathrm{Cl}=+/-0.195 ; \mathrm{p}=0.545)$	$0.152(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.010(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.845)$	$-0.011(\mathrm{Cl}=+/-0.195 ; p=0.901)$	0.978	-5.34\%	-6.40\%
Frequency	2015.2	$0.165(\mathrm{Cl}=+/-0.684 ; \mathrm{p}=0.598)$	$0.161(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.038(\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.565)$	$-0.232(\mathrm{Cl}=+/-0.685 ; \mathrm{p}=0.464)$	0.977	+17.96\%	-6.43\%
Frequency	2016.1	-0.066 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.161(\mathrm{Cl}=+/-0.060 ; p=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.038(\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.565$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.975	-6.43\%	-6.43\%
Frequency	2016.2	$-0.066(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.161(\mathrm{Cl}=+/-0.060 ; p=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	NA ($\mathrm{Cl}=+$ +/-NA; p $=$ NA $)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.975	-6.43\%	-6.43\%

					Implied Trend Rate
Loss Cost	2011.1	$-0.009(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.294$)	0.013 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.739	-0.87\%
Loss Cost	2011.2	$-0.012(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.178)$	$0.013(\mathrm{Cl}=+/-0.005 ; p=0.000)$	0.752	-1.20\%
Loss Cost	2012.1	$-0.012(\mathrm{Cl}=+/-0.020 ; p=0.228)$	0.013 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.745	-1.17\%
Loss Cost	2012.2	$-0.016(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.120)$	0.012 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.764	-1.63\%
Loss Cost	2013.1	$-0.017(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.153)$	0.012 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.756	-1.66\%
Loss Cost	2013.2	$-0.023(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.071)$	$0.012(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.779	-2.25\%
Loss Cost	2014.1	$-0.022(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.112)$	0.012 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.768	-2.20\%
Loss Cost	2014.2	$-0.029(\mathrm{Cl}=+/-0.030 ; p=0.056)$	0.012 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.789	-2.88\%
Loss Cost	2015.1	$-0.031(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.067)$	$0.012(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.782	-3.10\%
Loss Cost	2015.2	$-0.038(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.050)$	$0.011(\mathrm{Cl}=+/-0.005 ; p=0.001)$	0.789	-3.71\%
Loss Cost	2016.1	$-0.032(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.129)$	$0.011(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.001)$	0.769	-3.14\%
Loss Cost	2016.2	$-0.039(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.099$)	$0.011(\mathrm{Cl}=+/-0.006 ; p=0.001)$	0.775	-3.86\%
Severity	2011.1	$0.021(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	-0.001 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.445$)	0.593	+2.10\%
Severity	2011.2	$0.021(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.001)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.464)$	0.563	+2.11\%
Severity	2012.1	0.023 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.001$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.542)$	0.570	+2.30\%
Severity	2012.2	$0.025(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.001)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.635)$	0.583	+2.53\%
Severity	2013.1	0.028 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.769)$	0.626	+2.89\%
Severity	2013.2	0.029 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001$)	0.000 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.804$)	0.596	+2.96\%
Severity	2014.1	$0.029(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.002)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.791)$	0.543	+2.90\%
Severity	2014.2	0.027 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.009$)	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.746)$	0.470	+2.70\%
Severity	2015.1	$0.025(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.026)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.706$)	0.386	+2.48\%
Severity	2015.2	$0.021(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.074)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.659)$	0.284	+2.16\%
Severity	2016.1	0.023 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.095$)	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.692)$	0.250	+2.30\%
Severity	2016.2	0.018 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.221)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.657)$	0.118	+1.84\%
Frequency	2011.1	$-0.030(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001$)	$0.014(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.866	-2.91\%
Frequency	2011.2	$-0.033(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.873	-3.24\%
Frequency	2012.1	$-0.035(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.001$)	0.014 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.870	-3.39\%
Frequency	2012.2	$-0.041(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.898	-4.05\%
Frequency	2013.1	$-0.045(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.902	-4.42\%
Frequency	2013.2	$-0.052(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.920	-5.06\%
Frequency	2014.1	$-0.051(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.913	-4.95\%
Frequency	2014.2	$-0.056(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.918	-5.44\%
Frequency	2015.1	$-0.056(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.910	-5.44\%
Frequency	2015.2	$-0.059(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.906	-5.75\%
Frequency	2016.1	$-0.055(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.004)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.896	-5.32\%
Frequency	2016.2	$-0.058(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.007$)	0.012 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.887	-5.59\%

Coverage $=$ BI
End Trend Period $=2022.2$
Excluded Points $=2020.1$
Parameters Included: time, mobility

Fit					Implied Trend Rate
Loss Cost	2011.1	$-0.008(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.330)$	0.014 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.700	-0.83\%
Loss Cost	2011.2	$-0.012(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.206)$	$0.013(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.715	-1.16\%
Loss Cost	2012.1	$-0.011(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.262)$	0.013 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.707	-1.13\%
Loss Cost	2012.2	$-0.016(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.144)$	$0.013(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.728	-1.58\%
Loss Cost	2013.1	$-0.016(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.181)$	$0.013(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.720	-1.60\%
Loss Cost	2013.2	$-0.022(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.090)$	0.012 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.746	-2.20\%
Loss Cost	2014.1	$-0.022(\mathrm{Cl}=+/-0.030 ; p=0.138)$	0.012 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.001$)	0.733	-2.14\%
Loss Cost	2014.2	$-0.029(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.073)$	0.012 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.001$)	0.758	-2.84\%
Loss Cost	2015.1	$-0.031(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.088)$	0.012 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.002$)	0.749	-3.05\%
Loss Cost	2015.2	$-0.037(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.068)$	$0.011(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.003)$	0.758	-3.68\%
Loss Cost	2016.1	$-0.031(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.164)$	0.012 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.003$)	0.736	-3.08\%
Loss Cost	2016.2	$-0.039(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.131)$	$0.011(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.005$)	0.742	-3.82\%
Severity	2011.1	$0.022(\mathrm{Cl}=+/-0.009 ; p=0.000)$	0.000 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.850)$	0.588	+2.21\%
Severity	2011.2	$0.022(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.842)$	0.557	+2.24\%
Severity	2012.1	0.024 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.000 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.737$)	0.572	+2.44\%
Severity	2012.2	$0.027(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.003 ; p=0.622)$	0.595	+2.69\%
Severity	2013.1	0.030 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.450)$	0.658	+3.08\%
Severity	2013.2	$0.031(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.434)$	0.632	+3.19\%
Severity	2014.1	$0.031(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.464)$	0.580	+3.15\%
Severity	2014.2	0.030 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.003$)	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.521)$	0.505	+2.99\%
Severity	2015.1	0.028 ($\mathrm{Cl}=+/-0.020 ; p=0.009$)	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.580)$	0.416	+2.81\%
Severity	2015.2	0.025 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.030)$	$0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.650)$	0.304	+2.54\%
Severity	2016.1	0.027 ($\mathrm{Cl}=+/-0.026 ; p=0.040$)	$0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.630)$	0.281	+2.75\%
Severity	2016.2	0.023 ($\mathrm{Cl}=+/-0.029 ; p=0.109$)	$0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.693)$	0.134	+2.35\%
Frequency	2011.1	$-0.030(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.001)$	$0.013(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.836	-2.97\%
Frequency	2011.2	$-0.034(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.847	-3.32\%
Frequency	2012.1	-0.035 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.001$)	0.013 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.844	-3.48\%
Frequency	2012.2	$-0.042(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.879	-4.16\%
Frequency	2013.1	$-0.047(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.886	-4.55\%
Frequency	2013.2	$-0.054(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.011 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.910	-5.22\%
Frequency	2014.1	$-0.053(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.902	-5.13\%
Frequency	2014.2	$-0.058(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.011 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.910	-5.66\%
Frequency	2015.1	$-0.059(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.011 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.901	-5.71\%
Frequency	2015.2	$-0.063(\mathrm{Cl}=+/-0.029 ; p=0.001)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.898	-6.06\%
Frequency	2016.1	$-0.058(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.003)$	0.011 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.001$)	0.885	-5.67\%
Frequency	2016.2	$-0.062(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.005)$	0.011 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.001$)	0.878	-6.02\%

BI

Coverage $=\mathrm{BI}$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time

				Implied Trend
Fit	Start Date	Time	Adjusted R^2	Rate
Loss Cost	2011.1	-0.037 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.002$)	0.326	-3.62\%
Loss Cost	2011.2	$-0.041(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.001)$	0.365	-4.05\%
Loss Cost	2012.1	$-0.043(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.002)$	0.354	-4.23\%
Loss Cost	2012.2	-0.049 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.001$)	0.401	-4.78\%
Loss Cost	2013.1	-0.052 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.002$)	0.391	-5.03\%
Loss Cost	2013.2	$-0.059(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.001)$	0.443	-5.72\%
Loss Cost	2014.1	$-0.061(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.002)$	0.420	-5.93\%
Loss Cost	2014.2	-0.070 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.002)$	0.466	-6.73\%
Loss Cost	2015.1	-0.075 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.002)$	0.456	-7.18\%
Loss Cost	2015.2	$-0.083(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.003)$	0.475	-7.95\%
Loss Cost	2016.1	$-0.081(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.009)$	0.401	-7.75\%
Loss Cost	2016.2	$-0.090(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.011)$	0.409	-8.61\%
Severity	2011.1	0.023 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.600	+2.32\%
Severity	2011.2	0.023 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	0.573	+2.35\%
Severity	2012.1	0.025 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.583	+2.51\%
Severity	2012.2	0.027 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.599	+2.70\%
Severity	2013.1	0.030 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.645	+3.00\%
Severity	2013.2	0.030 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.618	+3.07\%
Severity	2014.1	0.030 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.570	+3.03\%
Severity	2014.2	0.028 ($\mathrm{Cl}=+/-0.015 ; p=0.001)$	0.502	+2.88\%
Severity	2015.1	0.027 ($\mathrm{Cl}=+/-0.017 ; p=0.004)$	0.424	+2.71\%
Severity	2015.2	$0.024(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.015)$	0.328	+2.45\%
Severity	2016.1	0.026 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.024)$	0.302	+2.59\%
Severity	2016.2	0.022 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.082)$	0.182	+2.19\%
Frequency	2011.1	$-0.060(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.565	-5.81\%
Frequency	2011.2	-0.065 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.586	-6.25\%
Frequency	2012.1	$-0.068(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.585	-6.57\%
Frequency	2012.2	-0.076 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.637	-7.29\%
Frequency	2013.1	$-0.081(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.650	-7.79\%
Frequency	2013.2	$-0.089(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000)$	0.685	-8.53\%
Frequency	2014.1	$-0.091(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.000)$	0.658	-8.69\%
Frequency	2014.2	$-0.098(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	0.668	-9.34\%
Frequency	2015.1	$-0.101(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	0.641	-9.63\%
Frequency	2015.2	$-0.107(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	0.627	-10.16\%
Frequency	2016.1	$-0.106(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.001)$	0.569	-10.08\%
Frequency	2016.2	-0.112 ($\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.003)$	0.537	-10.57\%

BI

Coverage $=\mathrm{BI}$
End Trend Period $=2022.2$
Excluded Points $=2020.1$
Parameters Included: time

				Implied Trend
Fit	Start Date	Time	Adjusted R^2	Rate
Loss Cost	2011.1	$-0.034(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.004)$	0.298	-3.32\%
Loss Cost	2011.2	$-0.038(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.003)$	0.340	-3.74\%
Loss Cost	2012.1	-0.040 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.004)$	0.330	-3.91\%
Loss Cost	2012.2	-0.046 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.002$)	0.381	-4.46\%
Loss Cost	2013.1	-0.048 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.003$)	0.373	-4.69\%
Loss Cost	2013.2	$-0.055(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.002)$	0.430	-5.38\%
Loss Cost	2014.1	$-0.057(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.003)$	0.408	-5.58\%
Loss Cost	2014.2	$-0.066(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.002)$	0.462	-6.38\%
Loss Cost	2015.1	$-0.071(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.003)$	0.456	-6.83\%
Loss Cost	2015.2	$-0.079(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.004)$	0.481	-7.61\%
Loss Cost	2016.1	$-0.077(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.011)$	0.410	-7.43\%
Loss Cost	2016.2	$-0.087(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.013)$	0.427	-8.35\%
Severity	2011.1	$0.021(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.607	+2.16\%
Severity	2011.2	$0.022(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.578	+2.18\%
Severity	2012.1	0.023 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	0.592	+2.33\%
Severity	2012.2	0.025 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	0.612	+2.52\%
Severity	2013.1	0.028 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.666	+2.82\%
Severity	2013.2	0.028 (Cl $=+/-0.011 ; p=0.000)$	0.640	+2.88\%
Severity	2014.1	0.028 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.592	+2.83\%
Severity	2014.2	0.026 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.001)$	0.525	+2.67\%
Severity	2015.1	0.025 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.004$)	0.446	+2.50\%
Severity	2015.2	$0.022(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.015)$	0.349	+2.25\%
Severity	2016.1	$0.024(\mathrm{Cl}=+/-0.020 ; p=0.023)$	0.330	+2.41\%
Severity	2016.2	0.020 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.078)$	0.206	+2.04\%
Frequency	2011.1	$-0.055(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.574	-5.36\%
Frequency	2011.2	-0.060 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.601	-5.79\%
Frequency	2012.1	$-0.063(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.601	-6.10\%
Frequency	2012.2	-0.070 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.664	-6.81\%
Frequency	2013.1	$-0.076(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	0.681	-7.30\%
Frequency	2013.2	$-0.084(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.725	-8.02\%
Frequency	2014.1	-0.085 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.700	-8.17\%
Frequency	2014.2	$-0.092(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	0.718	-8.82\%
Frequency	2015.1	-0.095 ($\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000$)	0.696	-9.11\%
Frequency	2015.2	$-0.102(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	0.691	-9.65\%
Frequency	2016.1	$-0.101(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.001)$	0.639	-9.61\%
Frequency	2016.2	-0.107 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.001$)	0.620	-10.18\%

BI

Coverage $=\mathrm{BI}$
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time

Fit	Start Date	Time	2	Implied Trend Rate
Loss Cost	2011.1	$-0.001(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.927$)	-0.062	-0.09\%
Loss Cost	2011.2	$-0.004(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.666)$	-0.053	-0.45\%
Loss Cost	2012.1	$-0.003(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.807)$	-0.067	-0.29\%
Loss Cost	2012.2	$-0.008(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.514)$	-0.041	-0.84\%
Loss Cost	2013.1	$-0.007(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.624)$	-0.061	-0.73\%
Loss Cost	2013.2	$-0.016(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.346)$	-0.003	-1.57\%
Loss Cost	2014.1	-0.013 ($\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.505$)	-0.050	-1.30\%
Loss Cost	2014.2	-0.025 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.275$)	0.034	-2.44\%
Loss Cost	2015.1	$-0.028(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.313)$	0.018	-2.75\%
Loss Cost	2015.2	$-0.042(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.218)$	0.095	-4.09\%
Loss Cost	2016.1	$-0.026(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.526)$	-0.085	-2.52\%
Loss Cost	2016.2	$-0.046(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.381)$	-0.013	-4.53\%
Severity	2011.1	0.020 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.546	+2.00\%
Severity	2011.2	0.020 ($\mathrm{Cl}=+/-0.010 ; p=0.001)$	0.501	+2.01\%
Severity	2012.1	$0.022(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.001)$	0.544	+2.27\%
Severity	2012.2	0.026 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.611	+2.64\%
Severity	2013.1	0.032 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.776	+3.27\%
Severity	2013.2	$0.034(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.770	+3.49\%
Severity	2014.1	0.035 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.723	+3.51\%
Severity	2014.2	$0.032(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.002)$	0.641	+3.30\%
Severity	2015.1	0.030 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.011$)	0.527	+3.01\%
Severity	2015.2	$0.024(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.054)$	0.351	+2.44\%
Severity	2016.1	0.030 ($\mathrm{Cl}=+/-0.031 ; p=0.059)$	0.386	+3.02\%
Severity	2016.2	0.019 (Cl = +/-0.038; p = 0.264)	0.089	+1.90\%
Frequency	2011.1	$-0.021(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.030)$	0.215	-2.05\%
Frequency	2011.2	$-0.024(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.021)$	0.259	-2.41\%
Frequency	2012.1	$-0.025(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.033)$	0.234	-2.50\%
Frequency	2012.2	$-0.035(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.007)$	0.403	-3.39\%
Frequency	2013.1	-0.040 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.006$)	0.437	-3.88\%
Frequency	2013.2	$-0.050(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.001)$	0.583	-4.89\%
Frequency	2014.1	-0.048 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.007)$	0.491	-4.65\%
Frequency	2014.2	$-0.057(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.005)$	0.561	-5.55\%
Frequency	2015.1	$-0.058(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.016)$	0.480	-5.59\%
Frequency	2015.2	$-0.066(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.023)$	0.478	-6.38\%
Frequency	2016.1	$-0.055(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.100)$	0.285	-5.38\%
Frequency	2016.2	$-0.065(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.142)$	0.254	-6.31\%

Fit	Start Date	Time	Mobility	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.023 ($\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.188$)	0.011 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.057(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.051$)	0.774	+2.37\%	-3.33\%
Loss Cost	2011.2	0.020 ($\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.339$)	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.053(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.101)$	0.774	+2.01\%	-3.25\%
Loss Cost	2012.1	$0.031(\mathrm{Cl}=+/-0.050 ; p=0.210)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.066(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.069)$	0.777	+3.15\%	-3.45\%
Loss Cost	2012.2	$0.024(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.427)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.058(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.162)$	0.778	+2.40\%	-3.34\%
Loss Cost	2013.1	0.040 ($\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.286)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.076(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.121)$	0.778	+4.09\%	-3.54\%
Loss Cost	2013.2	$0.024(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.621)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.058(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.326)$	0.780	+2.42\%	-3.39\%
Loss Cost	2014.1	$0.065(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.330)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.102(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.189)$	0.781	+6.73\%	-3.67\%
Loss Cost	2014.2	$0.033(\mathrm{Cl}=+/-0.213 ; \mathrm{p}=0.741)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.069(\mathrm{Cl}=+/-0.234 ; \mathrm{p}=0.533)$	0.780	+3.40\%	-3.53\%
Loss Cost	2015.1	$0.073(\mathrm{Cl}=+/-0.398 ; \mathrm{p}=0.696)$	$0.011(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.001$)	$-0.110(\mathrm{Cl}=+/-0.417 ; \mathrm{p}=0.576)$	0.770	+7.57\%	-3.63\%
Loss Cost	2015.2	$-0.448(\mathrm{Cl}=+/-1.207 ; \mathrm{p}=0.432)$	$0.011(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.001)$	0.416 ($\mathrm{Cl}=+/-1.224 ; \mathrm{p}=0.470)$	0.781	-36.09\%	-3.14\%
Loss Cost	2016.1	$-0.032(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.129)$	$0.011(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.001)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.769	-3.14\%	-3.14\%
Loss Cost	2016.2	$-0.039(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.099)$	$0.011(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.001)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.775	-3.86\%	-3.86\%
Severity	2011.1	$0.012(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.303)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.707$)	0.016 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.359)$	0.591	+1.17\%	+2.84\%
Severity	2011.2	$0.009(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.474)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.720)$	0.019 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.341)$	0.562	+0.95\%	+2.89\%
Severity	2012.1	$0.013(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.393)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.716$)	$0.014(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.527)$	0.556	+1.36\%	+2.81\%
Severity	2012.2	$0.021(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.269)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.703$)	$0.005(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.839)$	0.559	+2.16\%	+2.69\%
Severity	2013.1	0.042 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.077$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.658)$	$-0.018(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.543)$	0.612	+4.24\%	+2.43\%
Severity	2013.2	$0.055(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.075)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.647)$	$-0.032(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.371)$	0.592	+5.62\%	+2.30\%
Severity	2014.1	$0.067(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.114)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.645)$	$-0.045(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.342)$	0.542	+6.91\%	+2.21\%
Severity	2014.2	$0.075(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.241)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.653)$	$-0.054(\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.437)$	0.457	+7.81\%	+2.18\%
Severity	2015.1	$0.088(\mathrm{Cl}=+/-0.247 ; ~ p=0.451)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.662)$	$-0.067(\mathrm{Cl}=+/-0.258 ; \mathrm{p}=0.582)$	0.353	+9.23\%	+2.14\%
Severity	2015.2	$-0.073(\mathrm{Cl}=+/-0.774 ; \mathrm{p}=0.839)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.692)$	$0.096(\mathrm{Cl}=+/-0.785 ; \mathrm{p}=0.793)$	0.224	-7.06\%	+2.30\%
Severity	2016.1	$0.023(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.095)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.692)$	$N A(C l=+/-N A ; p=N A)$	0.250	+2.30\%	+2.30\%
Severity	2016.2	$0.018(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.221)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.657)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.118	+1.84\%	+1.84\%
Frequency	2011.1	$0.012(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.401)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.074(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.003)$	0.909	+1.19\%	-6.00\%
Frequency	2011.2	0.010 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.529$)	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.072(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.009)$	0.908	+1.05\%	-5.97\%
Frequency	2012.1	$0.018(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.378)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.080(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.010)$	0.907	+1.77\%	-6.09\%
Frequency	2012.2	$0.002(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.917)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.063(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.058)$	0.913	+0.24\%	-5.87\%
Frequency	2013.1	$-0.001(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.960)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.059(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.134)$	0.910	-0.15\%	-5.83\%
Frequency	2013.2	$-0.031(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.410)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.027(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.555)$	0.917	-3.02\%	-5.56\%
Frequency	2014.1	$-0.002(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.973)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.058(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.329)$	0.913	-0.17\%	-5.76\%
Frequency	2014.2	$-0.042(\mathrm{Cl}=+/-0.162 ; \mathrm{p}=0.586)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.016(\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.851)$	0.912	-4.09\%	-5.58\%
Frequency	2015.1	$-0.015(\mathrm{Cl}=+/-0.301 ; \mathrm{p}=0.914)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.043(\mathrm{Cl}=+/-0.316 ; \mathrm{p}=0.773)$	0.903	-1.52\%	-5.64\%
Frequency	2015.2	-0.375 ($\mathrm{Cl}=+/-0.922 ; \mathrm{p}=0.390$)	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.320 ($\mathrm{Cl}=+/-0.935 ; \mathrm{p}=0.467$)	0.902	-31.24\%	-5.32\%
Frequency	2016.1	$-0.055(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.004)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.896	-5.32\%	-5.32\%
Frequency	2016.2	$-0.058(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.007$)	$0.012(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.887	-5.59\%	-5.59\%

Coverage $=P D$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.025 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.090 ($\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.017$)	0.640	+2.58\%
Loss Cost	2004.2	$0.026(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.096(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.013$)	0.639	+2.67\%
Loss Cost	2005.1	0.025 ($\mathrm{Cl}=+/-0.007 ; p=0.000)$	$0.101(\mathrm{Cl}=+/-0.076 ; p=0.011)$	0.621	+2.58\%
Loss Cost	2005.2	0.026 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.103 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.012$)	0.599	+2.60\%
Loss Cost	2006.1	0.025 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.104(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.013$)	0.585	+2.58\%
Loss Cost	2006.2	0.026 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	0.108 ($\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.013$)	0.569	+2.64\%
Loss Cost	2007.1	$0.026(\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.106(\mathrm{Cl}=+/-0.086 ; p=0.017)$	0.561	+2.67\%
Loss Cost	2007.2	0.028 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.114(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.012$)	0.571	+2.83\%
Loss Cost	2008.1	0.028 ($\mathrm{Cl}=+/-0.010 ; p=0.000$)	0.112 ($\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.016$)	0.563	+2.87\%
Loss Cost	2008.2	0.028 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.111(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.021$)	0.523	+2.85\%
Loss Cost	2009.1	0.028 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.112 ($\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.026$)	0.510	+2.84\%
Loss Cost	2009.2	0.029 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	$0.117(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.025$)	0.496	+2.96\%
Loss Cost	2010.1	0.027 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	0.125 ($\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.021$)	0.474	+2.78\%
Loss Cost	2010.2	0.028 ($\mathrm{Cl}=+/-0.015 ; p=0.001$)	0.125 ($\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.026$)	0.432	+2.79\%
Loss Cost	2011.1	0.026 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.003$)	0.132 ($\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.024$)	0.412	+2.62\%
Loss Cost	2011.2	0.026 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.006$)	$0.134(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.028$)	0.374	+2.67\%
Loss Cost	2012.1	$0.024(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.019)$	0.144 ($\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.024$)	0.358	+2.40\%
Loss Cost	2012.2	$0.024(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.031$)	0.143 ($\mathrm{Cl}=+/-0.129 ; p=0.031$)	0.308	+2.40\%
Loss Cost	2013.1	0.019 ($\mathrm{Cl}=+/-0.023 ; p=0.096$)	$0.159(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.021$)	0.306	+1.93\%
Loss Cost	2013.2	$0.018(\mathrm{Cl}=+/-0.026 ; p=0.156)$	0.155 ($\mathrm{Cl}=+/-0.140 ; p=0.032$)	0.242	+1.81\%
Loss Cost	2014.1	$0.016(\mathrm{Cl}=+/-0.029 ; p=0.266)$	$0.163(\mathrm{Cl}=+/-0.149 ; p=0.034)$	0.239	+1.57\%
Loss Cost	2014.2	$0.012(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.440)$	$0.152(\mathrm{Cl}=+/-0.157 ; p=0.056)$	0.157	+1.19\%
Loss Cost	2015.1	0.007 ($\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.698$)	0.167 ($\mathrm{Cl}=+/-0.166 ; p=0.049$)	0.172	+0.67\%
Loss Cost	2015.2	$0.009(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.641$)	0.173 ($\mathrm{Cl}=+/-0.179 ; \mathrm{p}=0.057$)	0.161	+0.91\%
Loss Cost	2016.1	0.003 (Cl $=+/-0.048 ; p=0.895$)	0.188 ($\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.055$)	0.177	+0.29\%
Loss Cost	2016.2	$0.008(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.768$)	$0.198(\mathrm{Cl}=+/-0.210 ; \mathrm{p}=0.061$)	0.175	+0.76\%
Severity	2004.1	$0.053(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.024(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.412$)	0.915	+5.49\%
Severity	2004.2	$0.055(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.035 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.210$)	0.926	+5.68\%
Severity	2005.1	0.056 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.030 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.297$)	0.926	+5.78\%
Severity	2005.2	$0.057(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.037 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.187$)	0.929	+5.91\%
Severity	2006.1	0.059 ($\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.031 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.275$)	0.930	+6.03\%
Severity	2006.2	$0.061(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.042 ($\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.115$)	0.940	+6.24\%
Severity	2007.1	$0.062(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.033 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.196$)	0.945	+6.41\%
Severity	2007.2	$0.064(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.041 ($\mathrm{Cl}=+/-0.050 ; p=0.105$)	0.948	+6.57\%
Severity	2008.1	0.065 ($\mathrm{Cl}=+/-0.006 ; p=0.000$)	0.034 ($\mathrm{Cl}=+/-0.050 ; p=0.176$)	0.950	+6.72\%
Severity	2008.2	0.065 ($\mathrm{Cl}=+/-0.006 ; p=0.000$)	$0.036(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.164)$	0.945	+6.77\%
Severity	2009.1	$0.067(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$0.029(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.251)$	0.945	+6.90\%
Severity	2009.2	0.069 ($\mathrm{Cl}=+/-0.006 ; p=0.000)$	$0.038(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.128)$	0.950	+7.11\%
Severity	2010.1	0.070 ($\mathrm{Cl}=+/-0.007 ; p=0.000$)	$0.034(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.182$)	0.947	+7.20\%
Severity	2010.2	$0.071(\mathrm{Cl}=+/-0.007 ; p=0.000)$	$0.042(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.100)$	0.949	+7.40\%
Severity	2011.1	$0.072(\mathrm{Cl}=+/-0.008 ; p=0.000)$	0.040 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.131$)	0.944	+7.45\%
Severity	2011.2	0.073 ($\mathrm{Cl}=+/-0.008 ; p=0.000$)	0.046 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.089$)	0.943	+7.62\%
Severity	2012.1	$0.074(\mathrm{Cl}=+/-0.009 ; p=0.000)$	0.045 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.112$)	0.936	+7.64\%
Severity	2012.2	0.073 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.043 ($\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.141$)	0.925	+7.60\%
Severity	2013.1	$0.072(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.048 ($\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.124$)	0.915	+7.46\%
Severity	2013.2	$0.071(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.043 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.178$)	0.898	+7.31\%
Severity	2014.1	0.070 ($\mathrm{Cl}=+/-0.013 ; p=0.000$)	0.046 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.180$)	0.883	+7.22\%
Severity	2014.2	0.065 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	0.033 ($\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.304$)	0.868	+6.75\%
Severity	2015.1	$0.064(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.036 ($\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.293$)	0.844	+6.63\%
Severity	2015.2	0.065 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	0.038 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.307$)	0.814	+6.69\%
Severity	2016.1	0.067 ($\mathrm{Cl}=+/-0.021 ; p=0.000)$	0.033 ($\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.411$)	0.796	+6.92\%
Severity	2016.2	$0.069(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.037 ($\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.388$)	0.762	+7.13\%
Frequency	2004.1	$-0.028(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.066(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.132)$	0.578	-2.76\%
Frequency	2004.2	$-0.029(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.060 ($\mathrm{Cl}=+/-0.089 ; p=0.175$)	0.581	-2.85\%
Frequency	2005.1	$-0.031(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.072 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.109$)	0.605	-3.02\%
Frequency	2005.2	$-0.032(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.066 ($\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.148$)	0.608	-3.12\%
Frequency	2006.1	$-0.033(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.074(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.111$)	0.612	-3.26\%
Frequency	2006.2	$-0.034(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.066 ($\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.158$)	0.621	-3.39\%
Frequency	2007.1	$-0.036(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.073 ($\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.128$)	0.617	-3.51\%
Frequency	2007.2	$-0.036(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.073 ($\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.138$)	0.598	-3.50\%
Frequency	2008.1	$-0.037(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.079(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.122)$	0.585	-3.61\%
Frequency	2008.2	$-0.037(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.076 ($\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.150$)	0.574	-3.67\%
Frequency	2009.1	-0.039 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.082(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.131$)	0.563	-3.80\%
Frequency	2009.2	$-0.039(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.079 ($\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.161$)	0.552	-3.87\%
Frequency	2010.1	$-0.042(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.091(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.116$)	0.562	-4.12\%
Frequency	2010.2	$-0.044(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.083(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.160$)	0.562	-4.29\%
Frequency	2011.1	-0.046 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.092(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.134)$	0.553	-4.50\%
Frequency	2011.2	$-0.047(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.088 ($\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.169$)	0.540	-4.60\%
Frequency	2012.1	$-0.050(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.099(\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.138)$	0.534	-4.87\%
Frequency	2012.2	$-0.050(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.100(\mathrm{Cl}=+/-0.140 ; p=0.153)$	0.505	-4.83\%
Frequency	2013.1	$-0.053(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$0.111(\mathrm{Cl}=+/-0.147 ; p=0.128)$	0.495	-5.15\%
Frequency	2013.2	$-0.053(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.001)$	$0.112(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.147)$	0.467	-5.12\%
Frequency	2014.1	$-0.054(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.003)$	$0.117(\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.154)$	0.421	-5.28\%
Frequency	2014.2	$-0.053(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.007)$	$0.119(\mathrm{Cl}=+/-0.178 ; \mathrm{p}=0.172)$	0.387	-5.21\%
Frequency	2015.1	$-0.058(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.010)$	$0.131(\mathrm{Cl}=+/-0.190 ; p=0.162)$	0.360	-5.59\%
Frequency	2015.2	$-0.056(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.025)$	$0.135(\mathrm{Cl}=+/-0.205 ; \mathrm{p}=0.177)$	0.321	-5.42\%
Frequency	2016.1	$-0.064(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.026)$	$0.156(\mathrm{Cl}=+/-0.220 ; p=0.147)$	0.324	-6.19\%
Frequency	2016.2	$-0.061(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.059)$	$0.161(\mathrm{Cl}=+/-0.241 ; \mathrm{p}=0.166)$	0.285	-5.95\%

Coverage $=P D$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, scalar_level_change, mobility
Scalar Level Change Start Date $=$ 2022-07-01

Fit	Start Date	Time	Mobility	Scalar Shift	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.032 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.008(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.231(\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.007$)	0.842	+3.30\%
Loss Cost	2004.2	$0.034(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.222(\mathrm{Cl}=+/-0.162 ; \mathrm{p}=0.009)$	0.846	+3.42\%
Loss Cost	2005.1	$0.034(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.223(\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.010)$	0.835	+3.41\%
Loss Cost	2005.2	$0.034(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.221(\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.012)$	0.825	+3.43\%
Loss Cost	2006.1	0.035 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.214(\mathrm{Cl}=+/-0.170 ; \mathrm{p}=0.015$)	0.823	+3.52\%
Loss Cost	2006.2	0.035 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.209(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.019)$	0.817	+3.60\%
Loss Cost	2007.1	$0.037(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.196(\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.025)$	0.829	+3.80\%
Loss Cost	2007.2	$0.039(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.181(\mathrm{Cl}=+/-0.164 ; \mathrm{p}=0.032)$	0.844	+4.03\%
Loss Cost	2008.1	0.042 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.164(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.040)$	0.862	+4.29\%
Loss Cost	2008.2	0.042 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.166(\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.043)$	0.850	+4.26\%
Loss Cost	2009.1	$0.044(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.152(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.057)$	0.861	+4.50\%
Loss Cost	2009.2	0.046 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.141(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.077)$	0.862	+4.69\%
Loss Cost	2010.1	0.046 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.138 ($\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.093$)	0.853	+4.75\%
Loss Cost	2010.2	0.047 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.137(\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.106)$	0.841	+4.76\%
Loss Cost	2011.1	0.048 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.129(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.135)$	0.836	+4.91\%
Loss Cost	2011.2	0.049 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.125 ($\mathrm{Cl}=+/-0.180 ; \mathrm{p}=0.161$)	0.825	+4.98\%
Loss Cost	2012.1	$0.050(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.120(\mathrm{Cl}=+/-0.187 ; \mathrm{p}=0.196)$	0.816	+5.10\%
Loss Cost	2012.2	0.049 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.121 ($\mathrm{Cl}=+/-0.196 ; \mathrm{p}=0.209$)	0.801	+5.06\%
Loss Cost	2013.1	$0.049(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.125(\mathrm{Cl}=+/-0.206 ; \mathrm{p}=0.219)$	0.786	+5.00\%
Loss Cost	2013.2	0.046 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.138(\mathrm{Cl}=+/-0.214 ; \mathrm{p}=0.189)$	0.773	+4.68\%
Loss Cost	2014.1	$0.050(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001$)	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.119(\mathrm{Cl}=+/-0.221 ; \mathrm{p}=0.268)$	0.781	+5.14\%
Loss Cost	2014.2	$0.042(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.003)$	0.010 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$0.153(\mathrm{Cl}=+/-0.216 ; \mathrm{p}=0.150)$	0.791	+4.29\%
Loss Cost	2015.1	$0.043(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.008)$	0.010 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$0.149(\mathrm{Cl}=+/-0.233 ; \mathrm{p}=0.188)$	0.785	+4.40\%
Loss Cost	2015.2	$0.044(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.019)$	$0.010(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.146(\mathrm{Cl}=+/-0.252 ; \mathrm{p}=0.228)$	0.779	+4.47\%
Loss Cost	2016.1	$0.046(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.033)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.001$)	$0.138(\mathrm{Cl}=+/-0.275 ; \mathrm{p}=0.290)$	0.775	+4.73\%
Loss Cost	2016.2	0.046 ($\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.066$)	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.002)$	$0.137(\mathrm{Cl}=+/-0.304 ; \mathrm{p}=0.335)$	0.768	+4.75\%
Severity	2004.1	0.049 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$-0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.012)$	$0.103(\mathrm{Cl}=+/-0.186 ; \mathrm{p}=0.268)$	0.927	+4.97\%
Severity	2004.2	$0.051(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.016)$	$0.088(\mathrm{Cl}=+/-0.178 ; \mathrm{p}=0.322)$	0.934	+5.18\%
Severity	2005.1	$0.052(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.023)$	$0.079(\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.372)$	0.934	+5.30\%
Severity	2005.2	$0.053(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.033)$	$0.069(\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.429)$	0.933	+5.44\%
Severity	2006.1	$0.054(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.047)$	$0.059(\mathrm{Cl}=+/-0.176 ; \mathrm{p}=0.498)$	0.934	+5.59\%
Severity	2006.2	$0.057(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.068)$	$0.043(\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.606)$	0.940	+5.83\%
Severity	2007.1	$0.059(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.099)$	$0.028(\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.728)$	0.945	+6.06\%
Severity	2007.2	$0.060(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.138)$	$0.017(\mathrm{Cl}=+/-0.160 ; \mathrm{p}=0.829)$	0.945	+6.23\%
Severity	2008.1	$0.063(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.199)$	$0.003(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.970)$	0.948	+6.46\%
Severity	2008.2	$0.063(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	-0.002 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.216$)	$0.002(\mathrm{Cl}=+/-0.160 ; \mathrm{p}=0.977)$	0.943	+6.47\%
Severity	2009.1	0.065 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.296)$	$-0.010(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.896$)	0.943	+6.68\%
Severity	2009.2	0.067 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.407)$	$-0.024(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.749)$	0.945	+6.93\%
Severity	2010.1	$0.069(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.508)$	$-0.034(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.659)$	0.943	+7.11\%
Severity	2010.2	$0.071(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.649)$	$-0.047(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.541)$	0.942	+7.36\%
Severity	2011.1	0.072 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.743)$	$-0.055(\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.490)$	0.938	+7.51\%
Severity	2011.2	$0.074(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.861$)	$-0.065(\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.425)$	0.933	+7.71\%
Severity	2012.1	0.076 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.948)$	$-0.072(\mathrm{Cl}=+/-0.172 ; \mathrm{p}=0.390)$	0.927	+7.86\%
Severity	2012.2	0.074 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.879$)	$-0.065(\mathrm{Cl}=+/-0.180 ; p=0.453)$	0.915	+7.71\%
Severity	2013.1	$0.074(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.854)$	$-0.062(\mathrm{Cl}=+/-0.189 ; \mathrm{p}=0.496$)	0.901	+7.64\%
Severity	2013.2	0.070 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.714$)	$-0.046(\mathrm{Cl}=+/-0.194 ; \mathrm{p}=0.621$)	0.884	+7.26\%
Severity	2014.1	0.070 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.735)$	$-0.047(\mathrm{Cl}=+/-0.207 ; \mathrm{p}=0.636)$	0.865	+7.28\%
Severity	2014.2	$0.061(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.427)$	$-0.008(\mathrm{Cl}=+/-0.192 ; \mathrm{p}=0.932)$	0.858	+6.29\%
Severity	2015.1	$0.060(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.432)$	$-0.004(\mathrm{Cl}=+/-0.206 ; \mathrm{p}=0.971$)	0.830	+6.17\%
Severity	2015.2	$0.059(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.002)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.442)$	$0.001(\mathrm{Cl}=+/-0.224 ; \mathrm{p}=0.996)$	0.795	+6.06\%
Severity	2016.1	$0.064(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.003)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.554)$	$-0.017(\mathrm{Cl}=+/-0.240 ; p=0.879)$	0.778	+6.58\%
Severity	2016.2	$0.065(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.008)$	$-0.001(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.608)$	$-0.022(\mathrm{Cl}=+/-0.265 ; ~ p=0.855)$	0.735	+6.75\%
Frequency	2004.1	$-0.016(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.128 ($\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.032$)	0.933	-1.59\%
Frequency	2004.2	$-0.017(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.134(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.023)$	0.937	-1.68\%
Frequency	2005.1	-0.018 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.144(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.012)$	0.943	-1.80\%
Frequency	2005.2	$-0.019(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.152(\mathrm{Cl}=+/-0.107 ; ~ \mathrm{p}=0.007)$	0.948	-1.91\%
Frequency	2006.1	$-0.020(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.155(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.007)$	0.947	-1.96\%
Frequency	2006.2	$-0.021(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.167(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.002)$	0.955	-2.11\%
Frequency	2007.1	$-0.022(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.168(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.003)$	0.954	-2.13\%
Frequency	2007.2	$-0.021(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.164(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.004$)	0.952	-2.07\%
Frequency	2008.1	$-0.021(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.161(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.005$)	0.951	-2.03\%
Frequency	2008.2	$-0.021(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.164(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.005$)	0.949	-2.08\%
Frequency	2009.1	-0.021 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.162(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.007$)	0.947	-2.04\%
Frequency	2009.2	-0.021 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.165(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.008)$	0.946	-2.10\%
Frequency	2010.1	$-0.022(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.172(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.007)$	0.946	-2.20\%
Frequency	2010.2	$-0.024(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.184(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.003)$	0.951	-2.42\%
Frequency	2011.1	$-0.024(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.184(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.005$)	0.949	-2.41\%
Frequency	2011.2	-0.026 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.190(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.005$)	0.948	-2.53\%
Frequency	2012.1	$-0.026(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.192(\mathrm{Cl}=+/-0.130 ; p=0.006)$	0.946	-2.56\%
Frequency	2012.2	$-0.025(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$0.187(\mathrm{Cl}=+/-0.135 ; \mathrm{p}=0.010)$	0.943	-2.46\%
Frequency	2013.1	$-0.025(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.001$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.187(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.013)$	0.940	-2.46\%
Frequency	2013.2	$-0.024(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.004)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.184(\mathrm{Cl}=+/-0.150 ; \mathrm{p}=0.019)$	0.936	-2.41\%
Frequency	2014.1	$-0.020(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.019$)	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.166(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.033)$	0.938	-1.99\%
Frequency	2014.2	$-0.019(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.049)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.161(\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.049)$	0.935	-1.88\%
Frequency	2015.1	$-0.017(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.119)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.153(\mathrm{Cl}=+/-0.171 ; \mathrm{p}=0.076)$	0.931	-1.67\%
Frequency	2015.2	$-0.015(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.222)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.146(\mathrm{Cl}=+/-0.185 ; \mathrm{p}=0.110)$	0.927	-1.50\%
Frequency	2016.1	$-0.018(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.227)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.155(\mathrm{Cl}=+/-0.201 ; \mathrm{p}=0.117)$	0.924	-1.74\%
Frequency	2016.2	-0.019 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.273$)	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.159(\mathrm{Cl}=+/-0.222 ; \mathrm{p}=0.139)$	0.919	-1.87\%

Coverage $=P D$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time

Fit	Start Date	Time	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.026(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.587	+2.62\%
Loss Cost	2004.2	0.026 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.579	+2.67\%
Loss Cost	2005.1	0.026 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.551	+2.63\%
Loss Cost	2005.2	0.026 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.525	+2.60\%
Loss Cost	2006.1	0.026 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.508	+2.63\%
Loss Cost	2006.2	0.026 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.486	+2.64\%
Loss Cost	2007.1	0.027 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.482	+2.73\%
Loss Cost	2007.2	0.028 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.479	+2.83\%
Loss Cost	2008.1	$0.029(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.477	+2.95\%
Loss Cost	2008.2	$0.028(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.435	+2.85\%
Loss Cost	2009.1	$0.029(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.423	+2.93\%
Loss Cost	2009.2	0.029 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.400	+2.96\%
Loss Cost	2010.1	$0.029(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001)$	0.360	+2.90\%
Loss Cost	2010.2	$0.028(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.002)$	0.315	+2.79\%
Loss Cost	2011.1	$0.027(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.005)$	0.280	+2.76\%
Loss Cost	2011.2	$0.026(\mathrm{Cl}=+/-0.020 ; p=0.011)$	0.237	+2.67\%
Loss Cost	2012.1	0.026 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.022)$	0.197	+2.59\%
Loss Cost	2012.2	$0.024(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.049)$	0.146	+2.40\%
Loss Cost	2013.1	$0.022(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.099)$	0.097	+2.18\%
Loss Cost	2013.2	0.018 ($\mathrm{Cl}=+/-0.029 ; p=0.203)$	0.040	+1.81\%
Loss Cost	2014.1	$0.019(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.238)$	0.029	+1.87\%
Loss Cost	2014.2	$0.012(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.484)$	-0.031	+1.19\%
Loss Cost	2015.1	$0.011(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.580)$	-0.047	+1.06\%
Loss Cost	2015.2	$0.009(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.678)$	-0.062	+0.91\%
Loss Cost	2016.1	$0.009(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.729)$	-0.072	+0.88\%
Loss Cost	2016.2	$0.008(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.797$)	-0.084	+0.76\%
Severity	2004.1	$0.054(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.916	+5.50\%
Severity	2004.2	0.055 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.925	+5.68\%
Severity	2005.1	$0.056(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.926	+5.79\%
Severity	2005.2	0.057 ($\mathrm{Cl}=+/-0.006 ; ~ p=0.000)$	0.927	+5.91\%
Severity	2006.1	$0.059(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.929	+6.04\%
Severity	2006.2	$0.061(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.937	+6.24\%
Severity	2007.1	$0.062(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.943	+6.43\%
Severity	2007.2	$0.064(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.944	+6.57\%
Severity	2008.1	$0.065(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.948	+6.74\%
Severity	2008.2	$0.065(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.943	+6.77\%
Severity	2009.1	$0.067(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.945	+6.93\%
Severity	2009.2	$0.069(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.947	+7.11\%
Severity	2010.1	0.070 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.945	+7.24\%
Severity	2010.2	$0.071(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.945	+7.40\%
Severity	2011.1	$0.072(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.941	+7.50\%
Severity	2011.2	0.073 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.937	+7.62\%
Severity	2012.1	$0.074(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.930	+7.70\%
Severity	2012.2	0.073 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.920	+7.60\%
Severity	2013.1	0.073 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.907	+7.54\%
Severity	2013.2	$0.071(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.892	+7.31\%
Severity	2014.1	$0.071(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.875	+7.31\%
Severity	2014.2	$0.065(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.867	+6.75\%
Severity	2015.1	0.065 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.842	+6.72\%
Severity	2015.2	$0.065(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.812	+6.69\%
Severity	2016.1	0.068 ($\mathrm{Cl}=+/-0.020 ; p=0.000$)	0.800	+7.03\%
Severity	2016.2	$0.069(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.766	+7.13\%
Frequency	2004.1	$-0.028(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.562	-2.73\%
Frequency	2004.2	$-0.029(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.570	-2.85\%
Frequency	2005.1	$-0.030(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.585	-2.99\%
Frequency	2005.2	-0.032 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.594	-3.12\%
Frequency	2006.1	$-0.033(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.591	-3.22\%
Frequency	2006.2	$-0.034(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.607	-3.39\%
Frequency	2007.1	$-0.035(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.598	-3.47\%
Frequency	2007.2	$-0.036(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.579	-3.50\%
Frequency	2008.1	$-0.036(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.562	-3.56\%
Frequency	2008.2	$-0.037(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.555	-3.67\%
Frequency	2009.1	$-0.038(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.539	-3.74\%
Frequency	2009.2	$-0.039(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.532	-3.87\%
Frequency	2010.1	$-0.041(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.531	-4.05\%
Frequency	2010.2	$-0.044(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.541	-4.29\%
Frequency	2011.1	-0.045 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.524	-4.40\%
Frequency	2011.2	$-0.047(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.518	-4.60\%
Frequency	2012.1	$-0.049(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.501	-4.75\%
Frequency	2012.2	$-0.050(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.473	-4.83\%
Frequency	2013.1	$-0.051(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.001$)	0.452	-4.99\%
Frequency	2013.2	$-0.053(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001)$	0.425	-5.12\%
Frequency	2014.1	$-0.052(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.004)$	0.375	-5.07\%
Frequency	2014.2	$-0.053(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.008)$	0.344	-5.21\%
Frequency	2015.1	$-0.054(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.016)$	0.305	-5.30\%
Frequency	2015.2	$-0.056(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.028)$	0.266	-5.42\%
Frequency	2016.1	-0.059 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.042$)	0.243	-5.74\%
Frequency	2016.2	$-0.061(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.068)$	0.205	-5.95\%

Fit	Start Date	Time	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2004.1	0.023 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.013$)	0.005 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.731$)	0.577	+2.33\%	+2.84\%
Loss Cost	2004.2	$0.025(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.016)$	$0.003(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.840)$	0.567	+2.48\%	+2.80\%
Loss Cost	2005.1	0.023 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.040)$	0.005 ($\mathrm{Cl}=+/-0.033 ; p=0.743$)	0.539	+2.29\%	+2.85\%
Loss Cost	2005.2	$0.021(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.081)$	$0.007(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.683)$	0.513	+2.14\%	+2.88\%
Loss Cost	2006.1	$0.022(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.111)$	$0.007(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.725)$	0.494	+2.18\%	+2.87\%
Loss Cost	2006.2	$0.021(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.165)$	$0.007(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.726$)	0.471	+2.13\%	+2.88\%
Loss Cost	2007.1	0.025 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.148)$	$0.003(\mathrm{Cl}=+/-0.046 ; p=0.900)$	0.465	+2.52\%	+2.82\%
Loss Cost	2007.2	0.030 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.124$)	$-0.003(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.897)$	0.460	+3.08\%	+2.74\%
Loss Cost	2008.1	0.039 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.091$)	$-0.013(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.657)$	0.461	+3.94\%	+2.64\%
Loss Cost	2008.2	$0.034(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.201)$	$-0.008(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.815)$	0.415	+3.47\%	+2.69\%
Loss Cost	2009.1	$0.044(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.172)$	$-0.018(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.629)$	0.406	+4.47\%	+2.61\%
Loss Cost	2009.2	$0.054(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.175)$	$-0.028(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.525)$	0.386	+5.50\%	+2.54\%
Loss Cost	2010.1	$0.057(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.256)$	$-0.032(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.562)$	0.342	+5.87\%	+2.52\%
Loss Cost	2010.2	$0.056(\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.406)$	-0.031 ($\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.670)$	0.290	+5.74\%	+2.52\%
Loss Cost	2011.1	0.073 ($\mathrm{Cl}=+/-0.198 ; \mathrm{p}=0.449)$	$-0.049(\mathrm{Cl}=+/-0.209 ; \mathrm{p}=0.631)$	0.254	+7.61\%	+2.48\%
Loss Cost	2011.2	$0.091(\mathrm{Cl}=+/-0.326 ; \mathrm{p}=0.568)$	$-0.066(\mathrm{Cl}=+/-0.336 ; \mathrm{p}=0.684)$	0.206	+9.48\%	+2.45\%
Loss Cost	2012.1	$0.181(\mathrm{Cl}=+/-0.709 ; \mathrm{p}=0.600)$	-0.157 ($\mathrm{Cl}=+/-0.717 ; \mathrm{p}=0.652$)	0.164	+19.80\%	+2.40\%
Severity	2004.1	0.025 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.051(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.968	+2.52\%	+7.90\%
Severity	2004.2	0.027 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.048 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	0.969	+2.75\%	+7.84\%
Severity	2005.1	$0.027(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.048 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.967	+2.74\%	+7.84\%
Severity	2005.2	$0.027(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.049 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.966	+2.74\%	+7.84\%
Severity	2006.1	$0.027(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.048 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	0.964	+2.76\%	+7.84\%
Severity	2006.2	$0.030(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.045 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	0.964	+3.06\%	+7.78\%
Severity	2007.1	0.033 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.041 ($\mathrm{Cl}=+/-0.020 ; p=0.000$)	0.963	+3.36\%	+7.74\%
Severity	2007.2	$0.034(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.041 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.001$)	0.961	+3.44\%	+7.72\%
Severity	2008.1	0.037 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.001$)	0.037 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.006$)	0.960	+3.77\%	+7.68\%
Severity	2008.2	0.030 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.013$)	0.045 ($\mathrm{Cl}=+/-0.028 ; p=0.003)$	0.958	+3.04\%	+7.76\%
Severity	2009.1	$0.031(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.030)$	0.043 ($\mathrm{Cl}=+/-0.033 ; p=0.013$)	0.955	+3.18\%	+7.75\%
Severity	2009.2	0.035 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.045$)	0.039 ($\mathrm{Cl}=+/-0.040 ; p=0.054$)	0.953	+3.60\%	+7.72\%
Severity	2010.1	0.035 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.114)$	0.039 (Cl $=+/-0.049 ; p=0.113)$	0.949	+3.57\%	+7.72\%
Severity	2010.2	0.043 ($\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.151$)	$0.032(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.320)$	0.945	+4.35\%	+7.69\%
Severity	2011.1	$0.042(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.318)$	$0.032(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.475)$	0.939	+4.32\%	+7.69\%
Severity	2011.2	$0.062(\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.373)$	$0.012(\mathrm{Cl}=+/-0.146 ; p=0.865)$	0.934	+6.37\%	+7.66\%
Severity	2012.1	$0.156(\mathrm{Cl}=+/-0.304 ; \mathrm{p}=0.298)$	$-0.082(\mathrm{Cl}=+/-0.308 ; \mathrm{p}=0.582)$	0.928	+16.84\%	+7.60\%
Frequency	2004.1	$-0.002(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.830)$	-0.046 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.003$)	0.653	-0.19\%	-4.69\%
Frequency	2004.2	$-0.003(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.791)$	$-0.045(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.005)$	0.649	-0.26\%	-4.67\%
Frequency	2005.1	$-0.004(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.684)$	-0.043 ($\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.012$)	0.647	-0.43\%	-4.63\%
Frequency	2005.2	$-0.006(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.623)$	$-0.041(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.024)$	0.644	-0.58\%	-4.60\%
Frequency	2006.1	$-0.006(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.672)$	-0.042 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.035$)	0.635	-0.56\%	-4.61\%
Frequency	2006.2	$-0.009(\mathrm{Cl}=+/-0.030 ; p=0.541)$	-0.037 ($\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.077)$	0.635	-0.90\%	-4.55\%
Frequency	2007.1	$-0.008(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.631)$	$-0.039(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.098)$	0.623	-0.81\%	-4.56\%
Frequency	2007.2	$-0.003(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.857)$	$-0.044(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.090)$	0.607	-0.35\%	-4.62\%
Frequency	2008.1	$0.002(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.942)$	$-0.050(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.088)$	0.593	+0.16\%	-4.68\%
Frequency	2008.2	$0.004(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.875)$	-0.052 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.114$)	0.581	+0.41\%	-4.71\%
Frequency	2009.1	$0.012(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.693)$	$-0.061(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.111)$	0.567	+1.26\%	-4.77\%
Frequency	2009.2	0.018 ($\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.643$)	$-0.067(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.143)$	0.555	+1.83\%	-4.81\%
Frequency	2010.1	$0.022(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.661)$	-0.071 ($\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.208)$	0.544	+2.22\%	-4.83\%
Frequency	2010.2	$0.013(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.844)$	$-0.062(\mathrm{Cl}=+/-0.149 ; \mathrm{p}=0.395)$	0.536	+1.33\%	-4.80\%
Frequency	2011.1	$0.031(\mathrm{Cl}=+/-0.199 ; \mathrm{p}=0.749)$	$-0.081(\mathrm{Cl}=+/-0.210 ; p=0.434)$	0.516	+3.15\%	-4.84\%
Frequency	2011.2	$0.029(\mathrm{Cl}=+/-0.328 ; \mathrm{p}=0.857)$	$-0.078(\mathrm{Cl}=+/-0.338 ; \mathrm{p}=0.634)$	0.499	+2.92\%	-4.84\%
Frequency	2012.1	$0.025(\mathrm{Cl}=+/-0.717 ; \mathrm{p}=0.943)$	$-0.075(\mathrm{Cl}=+/-0.725 ; \mathrm{p}=0.832)$	0.476	+2.53\%	-4.83\%

Fit	Start Date	Time	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2004.1	0.020 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.006$)	0.020 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.125$)	0.720	+2.00\%	+4.09\%
Loss Cost	2004.2	$0.021(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.008)$	0.019 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.183)$	0.713	+2.12\%	+4.04\%
Loss Cost	2005.1	$0.019(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.027)$	$0.022(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.143)$	0.693	+1.89\%	+4.12\%
Loss Cost	2005.2	$0.017(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.071)$	$0.024(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.125)$	0.673	+1.69\%	+4.19\%
Loss Cost	2006.1	$0.017(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.107)$	$0.024(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.153)$	0.658	+1.68\%	+4.19\%
Loss Cost	2006.2	0.016 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.180)$	0.026 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.163$)	0.640	+1.57\%	+4.22\%
Loss Cost	2007.1	$0.019(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.152)$	$0.022(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.278)$	0.637	+1.91\%	+4.14\%
Loss Cost	2007.2	$0.024(\mathrm{Cl}=+/-0.030 ; p=0.117)$	0.016 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.467)$	0.636	+2.41\%	+4.04\%
Loss Cost	2008.1	$0.032(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.073)$	$0.007(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.779)$	0.643	+3.20\%	+3.89\%
Loss Cost	2008.2	$0.026(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.208)$	0.013 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.615$)	0.605	+2.59\%	+3.99\%
Loss Cost	2009.1	$0.034(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.162)$	$0.004(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.903)$	0.601	+3.48\%	+3.87\%
Loss Cost	2009.2	0.043 ($\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.160)$	$-0.005(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.882)$	0.584	+4.34\%	+3.78\%
Loss Cost	2010.1	$0.044(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.259)$	$-0.007(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.883)$	0.544	+4.46\%	+3.77\%
Loss Cost	2010.2	$0.039(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.455)$	$-0.001(\mathrm{Cl}=+/-0.120 ; p=0.984)$	0.491	+3.93\%	+3.80\%
Loss Cost	2011.1	$0.051(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.497)$	$-0.014(\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.863)$	0.455	+5.21\%	+3.75\%
Loss Cost	2011.2	$0.058(\mathrm{Cl}=+/-0.256 ; \mathrm{p}=0.637)$	$-0.021(\mathrm{Cl}=+/-0.269 ; \mathrm{p}=0.869)$	0.400	+5.96\%	+3.73\%
Loss Cost	2012.1	$0.126(\mathrm{Cl}=+/-0.558 ; \mathrm{p}=0.636)$	$-0.090(\mathrm{Cl}=+/-0.569 ; \mathrm{p}=0.740)$	0.351	+13.40\%	+3.66\%
Severity	2004.1	$0.023(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.059(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.967	+2.29\%	+8.54\%
Severity	2004.2	0.025 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.056 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.969	+2.50\%	+8.45\%
Severity	2005.1	$0.024(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.057(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.967	+2.46\%	+8.46\%
Severity	2005.2	$0.024(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.057(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.965	+2.43\%	+8.47\%
Severity	2006.1	$0.024(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.057(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.963	+2.42\%	+8.48\%
Severity	2006.2	$0.027(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.054(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.964	+2.70\%	+8.40\%
Severity	2007.1	$0.029(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.051(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.963	+2.96\%	+8.34\%
Severity	2007.2	0.029 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001)$	$0.051(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.961	+2.99\%	+8.33\%
Severity	2008.1	$0.032(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.001)$	0.047 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.001)$	0.959	+3.27\%	+8.28\%
Severity	2008.2	$0.024(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.019)$	$0.057(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.960	+2.43\%	+8.41\%
Severity	2009.1	$0.024(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.046)$	$0.056(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.001)$	0.957	+2.47\%	+8.41\%
Severity	2009.2	0.027 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.070)$	$0.053(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.007)$	0.955	+2.76\%	+8.38\%
Severity	2010.1	$0.025(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.187)$	0.056 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.019)$	0.950	+2.53\%	+8.40\%
Severity	2010.2	$0.030(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.238)$	0.050 ($\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.087)$	0.946	+3.04\%	+8.36\%
Severity	2011.1	$0.025(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.486)$	0.055 ($\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.172)$	0.940	+2.57\%	+8.38\%
Severity	2011.2	$0.037(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.531)$	0.043 ($\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.495)$	0.934	+3.81\%	+8.35\%
Severity	2012.1	0.115 ($\mathrm{Cl}=+/-0.267 ; \mathrm{p}=0.370$)	$-0.036(\mathrm{Cl}=+/-0.272 ; \mathrm{p}=0.781)$	0.928	+12.23\%	+8.27\%
Frequency	2004.1	$-0.003(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.582)$	$-0.039(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.725	-0.28\%	-4.09\%
Frequency	2004.2	$-0.004(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.522)$	$-0.038(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.001)$	0.723	-0.36\%	-4.07\%
Frequency	2005.1	$-0.006(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.369)$	$-0.035(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.003)$	0.727	-0.56\%	-4.00\%
Frequency	2005.2	$-0.007(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.293)$	$-0.033(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.009)$	0.728	-0.72\%	-3.95\%
Frequency	2006.1	$-0.007(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.352)$	$-0.033(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.014)$	0.719	-0.72\%	-3.95\%
Frequency	2006.2	$-0.011(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.201)$	$-0.028(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.044)$	0.728	-1.10\%	-3.85\%
Frequency	2007.1	$-0.010(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.295)$	$-0.029(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.057)$	0.715	-1.02\%	-3.87\%
Frequency	2007.2	$-0.006(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.605)$	$-0.035(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.039)$	0.700	-0.57\%	-3.96\%
Frequency	2008.1	$-0.001(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.957)$	$-0.041(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.030)$	0.687	-0.07\%	-4.05\%
Frequency	2008.2	$0.002(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.916)$	$-0.043(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.041)$	0.675	+0.16\%	-4.08\%
Frequency	2009.1	$0.010(\mathrm{Cl}=+/-0.037 ; p=0.581)$	$-0.053(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.031)$	0.665	+0.99\%	-4.18\%
Frequency	2009.2	0.015 ($\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.490$)	$-0.059(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.041)$	0.655	+1.54\%	-4.24\%
Frequency	2010.1	0.019 ($\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.514$)	$-0.062(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.075)$	0.645	+1.88\%	-4.27\%
Frequency	2010.2	$0.009(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.823)$	$-0.052(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.241)$	0.643	+0.86\%	-4.21\%
Frequency	2011.1	$0.025(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.644)$	$-0.069(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.257)$	0.622	+2.57\%	-4.27\%
Frequency	2011.2	0.020 ($\mathrm{Cl}=+/-0.190 ; p=0.821)$	$-0.064(\mathrm{Cl}=+/-0.199 ; \mathrm{p}=0.503)$	0.606	+2.07\%	-4.26\%
Frequency	2012.1	$0.010(\mathrm{Cl}=+/-0.415 ; \mathrm{p}=0.958)$	$-0.054(\mathrm{Cl}=+/-0.422 ; \mathrm{p}=0.789)$	0.581	+1.04\%	-4.25\%

Coverage $=P D$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, mobility

Fit	Start Date	Time	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.035 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.009 ($\mathrm{Cl}=+/-0.003 ; p=0.000$)	0.810	+3.59\%
Loss Cost	2004.2	0.036 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.003 ; p=0.000$)	0.815	+3.72\%
Loss Cost	2005.1	0.037 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.802	+3.73\%
Loss Cost	2005.2	0.037 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.791	+3.77\%
Loss Cost	2006.1	$0.038(\mathrm{Cl}=+/-0.007 ; ~ p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.790	+3.88\%
Loss Cost	2006.2	0.039 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.785	+3.97\%
Loss Cost	2007.1	$0.041(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.003 ; p=0.000$)	0.802	+4.17\%
Loss Cost	2007.2	$0.043(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.821	+4.40\%
Loss Cost	2008.1	0.046 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.844	+4.66\%
Loss Cost	2008.2	0.046 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.829	+4.66\%
Loss Cost	2009.1	0.048 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.844	+4.90\%
Loss Cost	2009.2	$0.050(\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.011(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.849	+5.09\%
Loss Cost	2010.1	$0.050(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.840	+5.18\%
Loss Cost	2010.2	$0.051(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.828	+5.23\%
Loss Cost	2011.1	$0.053(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.825	+5.39\%
Loss Cost	2011.2	$0.054(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.815	+5.50\%
Loss Cost	2012.1	0.055 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	0.012 ($\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.809	+5.64\%
Loss Cost	2012.2	$0.055(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.794	+5.67\%
Loss Cost	2013.1	0.055 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.778	+5.69\%
Loss Cost	2013.2	$0.054(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.760	+5.53\%
Loss Cost	2014.1	$0.058(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.776	+5.97\%
Loss Cost	2014.2	$0.053(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.771	+5.47\%
Loss Cost	2015.1	0.055 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000$)	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.769	+5.69\%
Loss Cost	2015.2	$0.057(\mathrm{Cl}=+/-0.027 ; p=0.001)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.767	+5.89\%
Loss Cost	2016.1	0.060 ($\mathrm{Cl}=+/-0.030 ; p=0.001$)	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.770	+6.23\%
Loss Cost	2016.2	$0.062(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.003)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.768	+6.43\%
Severity	2004.1	$0.050(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.019)$	0.926	+5.11\%
Severity	2004.2	$0.052(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.025$)	0.934	+5.30\%
Severity	2005.1	$0.053(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.033)$	0.934	+5.42\%
Severity	2005.2	$0.054(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.043)$	0.934	+5.55\%
Severity	2006.1	0.055 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.057)$	0.935	+5.69\%
Severity	2006.2	$0.057(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.075)$	0.942	+5.91\%
Severity	2007.1	$0.059(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.100)$	0.947	+6.12\%
Severity	2007.2	$0.061(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.130)$	0.947	+6.27\%
Severity	2008.1	$0.063(\mathrm{Cl}=+/-0.007 ; p=0.000)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.171)$	0.950	+6.46\%
Severity	2008.2	$0.063(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.185)$	0.945	+6.47\%
Severity	2009.1	$0.064(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.238)$	0.946	+6.66\%
Severity	2009.2	$0.066(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.306)$	0.947	+6.86\%
Severity	2010.1	0.068 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.369)$	0.945	+7.00\%
Severity	2010.2	$0.069(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.451)$	0.944	+7.20\%
Severity	2011.1	0.070 ($\mathrm{Cl}=+/-0.010 ; p=0.000$)	-0.001 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.507$)	0.939	+7.30\%
Severity	2011.2	0.072 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.576)$	0.935	+7.44\%
Severity	2012.1	0.073 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.626)$	0.928	+7.53\%
Severity	2012.2	$0.071(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	-0.001 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.579$)	0.917	+7.38\%
Severity	2013.1	0.070 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.562$)	0.904	+7.29\%
Severity	2013.2	$0.067(\mathrm{Cl}=+/-0.015 ; p=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.477)$	0.889	+6.97\%
Severity	2014.1	$0.067(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.490)$	0.871	+6.95\%
Severity	2014.2	0.060 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	-0.001 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.306$)	0.868	+6.23\%
Severity	2015.1	0.060 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.315$)	0.843	+6.14\%
Severity	2015.2	$0.059(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.328)$	0.812	+6.06\%
Severity	2016.1	$0.062(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.374)$	0.798	+6.40\%
Severity	2016.2	$0.063(\mathrm{Cl}=+/-0.029 ; p=0.001)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.404)$	0.761	+6.48\%
Frequency	2004.1	$-0.014(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.926	-1.44\%
Frequency	2004.2	-0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.013 (Cl $=+/-0.002 ; p=0.000)$	0.928	-1.51\%
Frequency	2005.1	$-0.016(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.013 (Cl $=+/-0.002 ; p=0.000)$	0.933	-1.60\%
Frequency	2005.2	$-0.017(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.013 (Cl $=+/-0.002 ; p=0.000)$	0.936	-1.68\%
Frequency	2006.1	$-0.017(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.934	-1.71\%
Frequency	2006.2	$-0.018(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.940	-1.83\%
Frequency	2007.1	$-0.018(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.938	-1.83\%
Frequency	2007.2	$-0.018(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.937	-1.76\%
Frequency	2008.1	$-0.017(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.935	-1.70\%
Frequency	2008.2	$-0.017(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.933	-1.71\%
Frequency	2009.1	$-0.017(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.931	-1.65\%
Frequency	2009.2	-0.017 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.929	-1.66\%
Frequency	2010.1	$-0.017(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.928	-1.71\%
Frequency	2010.2	$-0.019(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.013 (Cl $=+/-0.002 ; p=0.000)$	0.929	-1.84\%
Frequency	2011.1	$-0.018(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.013 (Cl $=+/-0.002 ; p=0.000)$	0.927	-1.78\%
Frequency	2011.2	$-0.018(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.001)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.924	-1.80\%
Frequency	2012.1	$-0.018(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.003)$	0.013 ($\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.921	-1.75\%
Frequency	2012.2	$-0.016(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.009)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.919	-1.59\%
Frequency	2013.1	$-0.015(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.024)$	0.013 ($\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.916	-1.49\%
Frequency	2013.2	$-0.014(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.060)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.913	-1.35\%
Frequency	2014.1	$-0.009(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.202)$	0.013 ($\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.919	-0.92\%
Frequency	2014.2	$-0.007(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.365)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.917	-0.72\%
Frequency	2015.1	$-0.004(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.618)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.917	-0.43\%
Frequency	2015.2	$-0.002(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.866)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.915	-0.16\%
Frequency	2016.1	$-0.002(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.889)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.911	-0.15\%
Frequency	2016.2	$0.000(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.974)$	$0.014(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.906	-0.04\%

Coverage $=P D$
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time

Fit	Start Date	Time	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.032(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.815	+3.30\%
Loss Cost	2004.2	$0.034(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.821	+3.42\%
Loss Cost	2005.1	$0.034(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.805	+3.42\%
Loss Cost	2005.2	$0.034(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.790	+3.44\%
Loss Cost	2006.1	0.035 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.787	+3.54\%
Loss Cost	2006.2	$0.036(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.779	+3.62\%
Loss Cost	2007.1	$0.038(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.799	+3.84\%
Loss Cost	2007.2	0.040 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.822	+4.09\%
Loss Cost	2008.1	$0.043(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.852	+4.39\%
Loss Cost	2008.2	$0.043(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.833	+4.36\%
Loss Cost	2009.1	$0.045(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.853	+4.65\%
Loss Cost	2009.2	0.048 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.858	+4.87\%
Loss Cost	2010.1	0.048 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	0.845	+4.96\%
Loss Cost	2010.2	0.049 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.826	+5.00\%
Loss Cost	2011.1	$0.051(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.821	+5.21\%
Loss Cost	2011.2	$0.052(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.803	+5.34\%
Loss Cost	2012.1	$0.054(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.789	+5.54\%
Loss Cost	2012.2	$0.054(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.755	+5.58\%
Loss Cost	2013.1	$0.054(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.714	+5.59\%
Loss Cost	2013.2	$0.052(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001)$	0.645	+5.32\%
Loss Cost	2014.1	$0.059(\mathrm{Cl}=+/-0.026 ; p=0.001)$	0.685	+6.09\%
Loss Cost	2014.2	0.050 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.004$)	0.589	+5.14\%
Loss Cost	2015.1	$0.054(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.008)$	0.557	+5.56\%
Loss Cost	2015.2	$0.059(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.017)$	0.518	+6.06\%
Loss Cost	2016.1	$0.069(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.025)$	0.526	+7.15\%
Loss Cost	2016.2	$0.080(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.045)$	0.502	+8.33\%
Severity	2004.1	$0.049(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.876	+5.01\%
Severity	2004.2	$0.051(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.889	+5.23\%
Severity	2005.1	$0.052(\mathrm{Cl}=+/-0.007 ; ~ p=0.000)$	0.890	+5.36\%
Severity	2005.2	$0.054(\mathrm{Cl}=+/-0.007 ; ~ p=0.000)$	0.890	+5.51\%
Severity	2006.1	$0.055(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.892	+5.67\%
Severity	2006.2	$0.058(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.905	+5.94\%
Severity	2007.1	$0.060(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.916	+6.20\%
Severity	2007.2	$0.062(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.918	+6.39\%
Severity	2008.1	$0.064(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.926	+6.66\%
Severity	2008.2	$0.065(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.917	+6.69\%
Severity	2009.1	$0.067(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.922	+6.95\%
Severity	2009.2	0.070 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	0.929	+7.26\%
Severity	2010.1	$0.072(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.930	+7.50\%
Severity	2010.2	0.075 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.935	+7.83\%
Severity	2011.1	$0.078(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.933	+8.06\%
Severity	2011.2	0.080 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.934	+8.38\%
Severity	2012.1	$0.083(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.932	+8.67\%
Severity	2012.2	$0.083(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.918	+8.63\%
Severity	2013.1	$0.084(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.902	+8.72\%
Severity	2013.2	$0.081(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.877	+8.45\%
Severity	2014.1	$0.084(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.859	+8.73\%
Severity	2014.2	$0.074(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.837	+7.70\%
Severity	2015.1	$0.076(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.801	+7.92\%
Severity	2015.2	0.079 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.001$)	0.761	+8.27\%
Severity	2016.1	0.096 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.001$)	0.835	+10.05\%
Severity	2016.2	$0.113(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.001)$	0.880	+11.92\%
Frequency	2004.1	$-0.016(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.713	-1.62\%
Frequency	2004.2	$-0.017(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.733	-1.72\%
Frequency	2005.1	$-0.019(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.776	-1.85\%
Frequency	2005.2	$-0.020(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.803	-1.96\%
Frequency	2006.1	-0.020 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.801	-2.02\%
Frequency	2006.2	$-0.022(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.852	-2.19\%
Frequency	2007.1	$-0.022(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.842	-2.22\%
Frequency	2007.2	$-0.022(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.822	-2.16\%
Frequency	2008.1	$-0.022(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.799	-2.13\%
Frequency	2008.2	$-0.022(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.789	-2.18\%
Frequency	2009.1	-0.022 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.762	-2.16\%
Frequency	2009.2	$-0.023(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.753	-2.23\%
Frequency	2010.1	$-0.024(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.761	-2.36\%
Frequency	2010.2	$-0.027(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.819	-2.62\%
Frequency	2011.1	$-0.027(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.795	-2.64\%
Frequency	2011.2	$-0.028(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.802	-2.80\%
Frequency	2012.1	$-0.029(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.782	-2.88\%
Frequency	2012.2	$-0.029(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.738	-2.81\%
Frequency	2013.1	$-0.029(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.702	-2.87\%
Frequency	2013.2	$-0.029(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.001)$	0.652	-2.89\%
Frequency	2014.1	$-0.025(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.003)$	0.556	-2.43\%
Frequency	2014.2	$-0.024(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.012)$	0.468	-2.38\%
Frequency	2015.1	$-0.022(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.045)$	0.340	-2.19\%
Frequency	2015.2	$-0.021(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.119)$	0.212	-2.04\%
Frequency	2016.1	$-0.027(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.112)$	0.260	-2.63\%
Frequency	2016.2	$-0.033(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.141)$	0.255	-3.21\%

Coverage $=P D$
End Trend Period = 2022.2
Excluded Points = NA
Parameters Included: time, seasonality, mobility

Fit	Start Date	Time	Seasonality	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.034(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.065 ($\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.012$)	0.009 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.838	+3.51\%
Loss Cost	2004.2	$0.036(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.072(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.005)$	$0.009(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.851	+3.66\%
Loss Cost	2005.1	0.036 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.074(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.005)$	$0.009(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.841	+3.62\%
Loss Cost	2005.2	0.036 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.077(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.004)$	$0.009(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.836	+3.70\%
Loss Cost	2006.1	0.037 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.075 ($\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.007$)	0.009 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.831	+3.75\%
Loss Cost	2006.2	0.038 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.080(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.004)$	$0.009(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.834	+3.88\%
Loss Cost	2007.1	0.040 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.073 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.008$)	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.841	+4.03\%
Loss Cost	2007.2	0.042 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.083(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.001)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.874	+4.30\%
Loss Cost	2008.1	$0.044(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.075(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.003)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.884	+4.49\%
Loss Cost	2008.2	$0.044(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.077(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.003)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.875	+4.55\%
Loss Cost	2009.1	0.046 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.070(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.008)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.880	+4.72\%
Loss Cost	2009.2	0.048 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.077(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.002)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.895	+4.96\%
Loss Cost	2010.1	0.048 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.078(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.003)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.888	+4.94\%
Loss Cost	2010.2	0.049 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.082(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.003)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.883	+5.07\%
Loss Cost	2011.1	0.050 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.080(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.005)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.877	+5.11\%
Loss Cost	2011.2	$0.052(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.085(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.003)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.877	+5.30\%
Loss Cost	2012.1	$0.051(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.086(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.005$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.870	+5.28\%
Loss Cost	2012.2	0.053 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.089 ($\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.005$)	0.011 ($\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.863	+5.42\%
Loss Cost	2013.1	$0.051(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.096(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.005$)	$0.011(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.859	+5.20\%
Loss Cost	2013.2	$0.051(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.096(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.007$)	0.011 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.844	+5.21\%
Loss Cost	2014.1	$0.053(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.091(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.016)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.844	+5.40\%
Loss Cost	2014.2	$0.050(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.084(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.027$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.833	+5.12\%
Loss Cost	2015.1	0.049 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.086(\mathrm{Cl}=+/-0.080 ; p=0.037)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.829	+5.04\%
Loss Cost	2015.2	$0.053(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.094(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.030)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.838	+5.42\%
Loss Cost	2016.1	$0.052(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.002)$	0.095 ($\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.045$)	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.834	+5.36\%
Loss Cost	2016.2	$0.057(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.002)$	$0.105(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.038)$	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.844	+5.81\%
Severity	2004.1	0.049 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.036(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.204)$	$-0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.012)$	0.928	+5.06\%
Severity	2004.2	$0.051(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.045(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.090)$	-0.004 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.012$)	0.937	+5.26\%
Severity	2005.1	$0.052(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.040(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.136)$	$-0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.018)$	0.936	+5.36\%
Severity	2005.2	$0.054(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.046(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.084)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.022)$	0.938	+5.50\%
Severity	2006.1	$0.055(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.132)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.032)$	0.938	+5.62\%
Severity	2006.2	$0.057(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.050(\mathrm{Cl}=+/-0.050 ; p=0.049)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.033)$	0.947	+5.85\%
Severity	2007.1	$0.059(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$0.042(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.093)$	-0.003 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.051$)	0.950	+6.03\%
Severity	2007.2	$0.060(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.048(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.050$)	$-0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.061)$	0.952	+6.20\%
Severity	2008.1	$0.062(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.093)$	$-0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.090)$	0.953	+6.37\%
Severity	2008.2	$0.062(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.043(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.092)$	-0.002 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.103$)	0.949	+6.41\%
Severity	2009.1	$0.064(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.037(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.152)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.145)$	0.948	+6.56\%
Severity	2009.2	0.066 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.044(\mathrm{Cl}=+/-0.050 ; p=0.079)$	-0.002 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.172$)	0.952	+6.79\%
Severity	2010.1	$0.067(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.117)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.216)$	0.948	+6.88\%
Severity	2010.2	$0.069(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.047(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.068)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.255)$	0.950	+7.10\%
Severity	2011.1	$0.069(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.046(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.089)$	-0.001 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.286$)	0.945	+7.13\%
Severity	2011.2	$0.071(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.051(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.066)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.330)$	0.943	+7.31\%
Severity	2012.1	$0.071(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.051(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.081$)	-0.001 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.350$)	0.936	+7.31\%
Severity	2012.2	0.070 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.050 ($\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.105$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.350)$	0.925	+7.24\%
Severity	2013.1	$0.068(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.057(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.081$)	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.288)$	0.916	+7.00\%
Severity	2013.2	0.066 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.052(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.118)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.270)$	0.900	+6.79\%
Severity	2014.1	$0.064(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.057(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.109)$	-0.002 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.247)$	0.886	+6.59\%
Severity	2014.2	$0.059(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.045(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.170)$	-0.002 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.171$)	0.877	+6.04\%
Severity	2015.1	$0.056(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.052(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.143)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.152)$	0.859	+5.75\%
Severity	2015.2	0.056 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.053(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.163)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.172)$	0.830	+5.80\%
Severity	2016.1	$0.058(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.001)$	0.050 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.231$)	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.215)$	0.809	+5.94\%
Severity	2016.2	$0.060(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001)$	$0.055(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.227)$	$-0.002(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.234)$	0.776	+6.16\%
Frequency	2004.1	-0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.030(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.102)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.929	-1.48\%
Frequency	2004.2	$-0.015(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.027(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.138)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.931	-1.53\%
Frequency	2005.1	$-0.017(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.034(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.059)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.938	-1.65\%
Frequency	2005.2	$-0.017(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.031(\mathrm{Cl}=+/-0.036 ; p=0.085)$	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.940	-1.71\%
Frequency	2006.1	$-0.018(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.034(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.068$)	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.939	-1.77\%
Frequency	2006.2	$-0.019(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.030(\mathrm{Cl}=+/-0.036 ; p=0.104)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.943	-1.86\%
Frequency	2007.1	$-0.019(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.031(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.104)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.942	-1.89\%
Frequency	2007.2	$-0.018(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.035 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.072$)	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.942	-1.80\%
Frequency	2008.1	-0.018 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.033(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.095)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.940	-1.77\%
Frequency	2008.2	$-0.018(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.034(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.100)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.938	-1.75\%
Frequency	2009.1	-0.017 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.033(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.128)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.935	-1.72\%
Frequency	2009.2	$-0.017(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.033(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.135)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.933	-1.71\%
Frequency	2010.1	-0.018 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.037(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.108)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.933	-1.81\%
Frequency	2010.2	$-0.019(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.034(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.146)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.933	-1.90\%
Frequency	2011.1	-0.019 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.034(\mathrm{Cl}=+/-0.050 ; p=0.173)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.930	-1.89\%
Frequency	2011.2	-0.019 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.001$)	$0.034(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.187)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.928	-1.88\%
Frequency	2012.1	$-0.019(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.002)$	$0.034(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.210$)	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.924	-1.89\%
Frequency	2012.2	$-0.017(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.006)$	0.040 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.157$)	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.924	-1.70\%
Frequency	2013.1	$-0.017(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.013$)	$0.039(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.191$)	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.920	-1.68\%
Frequency	2013.2	$-0.015(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.037)$	$0.044(\mathrm{Cl}=+/-0.063 ; p=0.156)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.920	-1.49\%
Frequency	2014.1	$-0.011(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.137)$	$0.033(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.288)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.920	-1.11\%
Frequency	2014.2	$-0.009(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.272)$	$0.039(\mathrm{Cl}=+/-0.067 ; p=0.228)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.921	-0.87\%
Frequency	2015.1	$-0.007(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.457)$	$0.034(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.329)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.917	-0.67\%
Frequency	2015.2	$-0.004(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.712)$	$0.041(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.257)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.918	-0.36\%
Frequency	2016.1	$-0.005(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.632)$	$0.045(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.256)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.914	-0.54\%
Frequency	2016.2	$-0.003(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.799$)	$0.050(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.243)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.911	-0.32\%

Coverage $=P D$
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time, seasonality

					Implied Trend Rate
Fit	Start Date	Time	Seasonality	Adjusted R^2	Rate
Loss Cost	2004.1	0.032 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.054 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.031$)	0.838	+3.27\%
Loss Cost	2004.2	$0.034(\mathrm{Cl}=+/-0.005 ; p=0.000)$	$0.062(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.012)$	0.852	+3.42\%
Loss Cost	2005.1	0.033 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.065 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.012$)	0.841	+3.37\%
Loss Cost	2005.2	$0.034(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.068 ($\mathrm{Cl}=+/-0.050 ; p=0.010$)	0.832	+3.44\%
Loss Cost	2006.1	0.034 ($\mathrm{Cl}=+/-0.006 ; p=0.000$)	0.065 ($\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.016$)	0.825	+3.49\%
Loss Cost	2006.2	$0.036(\mathrm{Cl}=+/-0.007 ; p=0.000)$	$0.071(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.010$)	0.826	+3.62\%
Loss Cost	2007.1	0.037 ($\mathrm{Cl}=+/-0.007 ; ~ p=0.000$)	$0.064(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.020$)	0.835	+3.79\%
Loss Cost	2007.2	0.040 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.077 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.003$)	0.878	+4.09\%
Loss Cost	2008.1	0.042 ($\mathrm{Cl}=+/-0.007 ; p=0.000$)	0.068 ($\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.005$)	0.893	+4.31\%
Loss Cost	2008.2	0.043 ($\mathrm{Cl}=+/-0.007 ; ~ p=0.000)$	0.070 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.006$)	0.880	+4.36\%
Loss Cost	2009.1	0.045 ($\mathrm{Cl}=+/-0.007 ; p=0.000$)	$0.062(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.013$)	0.889	+4.56\%
Loss Cost	2009.2	0.048 ($\mathrm{Cl}=+/-0.007 ; p=0.000$)	0.072 ($\mathrm{Cl}=+/-0.043 ; p=0.003$)	0.911	+4.87\%
Loss Cost	2010.1	0.047 ($\mathrm{Cl}=+/-0.008 ; p=0.000)$	0.073 ($\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.004$)	0.902	+4.84\%
Loss Cost	2010.2	0.049 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.078(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.003)$	0.895	+5.00\%
Loss Cost	2011.1	0.049 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.076 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.006$)	0.887	+5.06\%
Loss Cost	2011.2	$0.052(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.084(\mathrm{Cl}=+/-0.050 ; p=0.003)$	0.889	+5.34\%
Loss Cost	2012.1	$0.052(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.084(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.005$)	0.877	+5.34\%
Loss Cost	2012.2	$0.054(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	0.090 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.005$)	0.866	+5.58\%
Loss Cost	2013.1	$0.051(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.097(\mathrm{Cl}=+/-0.060 ; p=0.005)$	0.854	+5.28\%
Loss Cost	2013.2	$0.052(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.097 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.008$)	0.812	+5.32\%
Loss Cost	2014.1	$0.055(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.090 ($\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.019$)	0.815	+5.69\%
Loss Cost	2014.2	0.050 ($\mathrm{Cl}=+/-0.024 ; p=0.001$)	$0.080(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.039)$	0.738	+5.14\%
Loss Cost	2015.1	0.049 ($\mathrm{Cl}=+/-0.030 ; p=0.006$)	$0.082(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.061$)	0.704	+5.03\%
Loss Cost	2015.2	$0.059(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.005$)	0.097 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.036$)	0.745	+6.06\%
Loss Cost	2016.1	0.060 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.023$)	0.095 ($\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.076$)	0.716	+6.19\%
Loss Cost	2016.2	$0.080(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.009$)	$0.118(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.025$)	0.846	+8.33\%
Severity	2004.1	0.049 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.026 ($\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.411$)	0.874	+4.99\%
Severity	2004.2	$0.051(\mathrm{Cl}=+/-0.007 ; ~ p=0.000)$	0.037 ($\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.210$)	0.892	+5.23\%
Severity	2005.1	0.052 ($\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.032 ($\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.292$)	0.890	+5.34\%
Severity	2005.2	$0.054(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.039 ($\mathrm{Cl}=+/-0.060 ; p=0.190$)	0.893	+5.51\%
Severity	2006.1	0.055 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.033(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.277)$	0.893	+5.65\%
Severity	2006.2	$0.058(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.046 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.111$)	0.911	+5.94\%
Severity	2007.1	$0.060(\mathrm{Cl}=+/-0.007 ; p=0.000)$	$0.036(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.195)$	0.918	+6.16\%
Severity	2007.2	$0.062(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.045 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.099$)	0.924	+6.39\%
Severity	2008.1	$0.064(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.036 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.175$)	0.929	+6.62\%
Severity	2008.2	0.065 ($\mathrm{Cl}=+/-0.008 ; p=0.000$)	$0.039(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.162$)	0.921	+6.69\%
Severity	2009.1	$0.067(\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.031(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.264)$	0.923	+6.91\%
Severity	2009.2	0.070 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	0.042 ($\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.106$)	0.936	+7.26\%
Severity	2010.1	$0.072(\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.037(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.172)$	0.933	+7.44\%
Severity	2010.2	0.075 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	0.048 ($\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.058$)	0.945	+7.83\%
Severity	2011.1	0.077 ($\mathrm{Cl}=+/-0.010 ; p=0.000$)	0.044 ($\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.095$)	0.941	+7.98\%
Severity	2011.2	0.080 ($\mathrm{Cl}=+/-0.010 ; p=0.000$)	$0.054(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.032$)	0.950	+8.38\%
Severity	2012.1	$0.082(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.050 ($\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.058$)	0.945	+8.55\%
Severity	2012.2	$0.083(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.052 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.066$)	0.934	+8.63\%
Severity	2013.1	$0.082(\mathrm{Cl}=+/-0.015 ; p=0.000)$	$0.054(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.077$)	0.921	+8.53\%
Severity	2013.2	$0.081(\mathrm{Cl}=+/-0.018 ; p=0.000)$	$0.053(\mathrm{Cl}=+/-0.067 ; p=0.111)$	0.896	+8.45\%
Severity	2014.1	$0.082(\mathrm{Cl}=+/-0.022 ; p=0.000)$	$0.052(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.155)$	0.876	+8.50\%
Severity	2014.2	$0.074(\mathrm{Cl}=+/-0.023 ; p=0.000)$	$0.038(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.266$)	0.844	+7.70\%
Severity	2015.1	$0.074(\mathrm{Cl}=+/-0.030 ; p=0.001)$	0.039 ($\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.321$)	0.805	+7.66\%
Severity	2015.2	$0.079(\mathrm{Cl}=+/-0.037 ; p=0.002)$	0.047 ($\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.272$)	0.776	+8.27\%
Severity	2016.1	$0.093(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.003)$	0.026 ($\mathrm{Cl}=+/-0.100 ; \mathrm{p}=0.529$)	0.819	+9.77\%
Severity	2016.2	0.113 ($\mathrm{Cl}=+/-0.040 ; p=0.001$)	0.049 ($\mathrm{Cl}=+/-0.080 ; p=0.166$)	0.913	+11.92\%
Frequency	2004.1	$-0.017(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.029(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.092)$	0.731	-1.64\%
Frequency	2004.2	$-0.017(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.025 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.143$)	0.745	-1.72\%
Frequency	2005.1	$-0.019(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.033 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.037$)	0.803	-1.87\%
Frequency	2005.2	$-0.020(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.028(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.064$)	0.822	-1.96\%
Frequency	2006.1	$-0.021(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.032(\mathrm{Cl}=+/-0.030 ; p=0.037)$	0.827	-2.04\%
Frequency	2006.2	$-0.022(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.026 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.065$)	0.867	-2.19\%
Frequency	2007.1	$-0.023(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.028 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.050$)	0.861	-2.24\%
Frequency	2007.2	$-0.022(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.032 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.030$)	0.850	-2.16\%
Frequency	2008.1	$-0.022(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.032 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.039$)	0.829	-2.16\%
Frequency	2008.2	$-0.022(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.031(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.053$)	0.817	-2.18\%
Frequency	2009.1	$-0.022(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.031(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.062$)	0.792	-2.19\%
Frequency	2009.2	$-0.023(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.030 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.085$)	0.779	-2.23\%
Frequency	2010.1	$-0.024(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.037 ($\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.033$)	0.808	-2.42\%
Frequency	2010.2	$-0.027(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.030 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.059$)	0.847	-2.62\%
Frequency	2011.1	$-0.027(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.033 ($\mathrm{Cl}=+/-0.033 ; p=0.053$)	0.831	-2.70\%
Frequency	2011.2	$-0.028(\mathrm{Cl}=+/-0.007 ; ~ p=0.000)$	$0.029(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.087$)	0.829	-2.80\%
Frequency	2012.1	-0.030 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.034(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.061$)	0.823	-2.96\%
Frequency	2012.2	-0.029 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.038(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.048$)	0.797	-2.81\%
Frequency	2013.1	$-0.030(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.042 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.037$)	0.785	-3.00\%
Frequency	2013.2	$-0.029(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.045 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.041$)	0.753	-2.89\%
Frequency	2014.1	$-0.026(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.001$)	$0.038(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.086)$	0.651	-2.59\%
Frequency	2014.2	$-0.024(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.007)$	0.042 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.081$)	0.600	-2.38\%
Frequency	2015.1	$-0.025(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.021)$	$0.043(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.113)$	0.486	-2.44\%
Frequency	2015.2	$-0.021(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.081)$	$0.050(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.101$)	0.434	-2.04\%
Frequency	2016.1	$-0.033(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.014)$	0.068 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.021$)	0.724	-3.26\%
Frequency	2016.2	$-0.033(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.053)$	$0.069(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.046)$	0.693	-3.21\%

Coverage $=D C$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time

Fit	Start Date	Time	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.029(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.503	+2.96\%
Loss Cost	2004.2	$0.030(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.495	+3.02\%
Loss Cost	2005.1	$0.031(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.488	+3.10\%
Loss Cost	2005.2	$0.031(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.471	+3.13\%
Loss Cost	2006.1	$0.032(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.467	+3.23\%
Loss Cost	2006.2	$0.031(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.438	+3.20\%
Loss Cost	2007.1	$0.032(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.428	+3.28\%
Loss Cost	2007.2	$0.033(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.419	+3.37\%
Loss Cost	2008.1	$0.034(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.416	+3.51\%
Loss Cost	2008.2	$0.035(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.402	+3.59\%
Loss Cost	2009.1	$0.036(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.394	+3.71\%
Loss Cost	2009.2	$0.037(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.370	+3.74\%
Loss Cost	2010.1	$0.037(\mathrm{Cl}=+/-0.020 ; p=0.001)$	0.346	+3.78\%
Loss Cost	2010.2	$0.036(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.002)$	0.306	+3.70\%
Loss Cost	2011.1	$0.037(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.004)$	0.285	+3.76\%
Loss Cost	2011.2	$0.036(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.010)$	0.241	+3.63\%
Loss Cost	2012.1	$0.034(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.023)$	0.196	+3.46\%
Loss Cost	2012.2	$0.029(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.067)$	0.121	+2.90\%
Loss Cost	2013.1	$0.024(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.148)$	0.063	+2.46\%
Loss Cost	2013.2	$0.018(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.325)$	0.001	+1.77\%
Loss Cost	2014.1	$0.013(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.496)$	-0.031	+1.35\%
Loss Cost	2014.2	$0.008(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.713)$	-0.057	+0.80\%
Loss Cost	2015.1	$-0.001(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.976$)	-0.071	-0.07\%
Loss Cost	2015.2	$-0.008(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.780)$	-0.070	-0.75\%
Loss Cost	2016.1	-0.016 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.603)$	-0.058	-1.60\%
Loss Cost	2016.2	$-0.028(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.423)$	-0.026	-2.80\%
Severity	2004.1	$0.037(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.857	+3.75\%
Severity	2004.2	$0.038(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.863	+3.87\%
Severity	2005.1	$0.039(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.872	+4.00\%
Severity	2005.2	0.040 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.873	+4.10\%
Severity	2006.1	$0.042(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.886	+4.27\%
Severity	2006.2	$0.043(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.890	+4.39\%
Severity	2007.1	0.045 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.901	+4.57\%
Severity	2007.2	0.046 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.912	+4.75\%
Severity	2008.1	0.049 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.933	+4.99\%
Severity	2008.2	$0.050(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.939	+5.15\%
Severity	2009.1	$0.052(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.953	+5.37\%
Severity	2009.2	$0.054(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.955	+5.50\%
Severity	2010.1	$0.056(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.966	+5.72\%
Severity	2010.2	$0.057(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.966	+5.83\%
Severity	2011.1	$0.058(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.972	+6.02\%
Severity	2011.2	$0.060(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.973	+6.16\%
Severity	2012.1	$0.061(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.977	+6.34\%
Severity	2012.2	$0.062(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.974	+6.36\%
Severity	2013.1	$0.062(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.972	+6.44\%
Severity	2013.2	$0.062(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.967	+6.42\%
Severity	2014.1	$0.063(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.963	+6.51\%
Severity	2014.2	$0.062(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.957	+6.42\%
Severity	2015.1	$0.062(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.948	+6.34\%
Severity	2015.2	$0.060(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.937	+6.19\%
Severity	2016.1	$0.060(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.924	+6.19\%
Severity	2016.2	$0.058(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.905	+5.97\%
Frequency	2004.1	$-0.008(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.089)$	0.053	-0.77\%
Frequency	2004.2	$-0.008(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.087$)	0.055	-0.82\%
Frequency	2005.1	$-0.009(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.084)$	0.058	-0.87\%
Frequency	2005.2	$-0.009(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.079)$	0.063	-0.93\%
Frequency	2006.1	$-0.010(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.077)$	0.066	-1.00\%
Frequency	2006.2	$-0.012(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.053)$	0.087	-1.15\%
Frequency	2007.1	$-0.012(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.050)$	0.093	-1.24\%
Frequency	2007.2	$-0.013(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.051)$	0.095	-1.31\%
Frequency	2008.1	$-0.014(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.048)$	0.101	-1.41\%
Frequency	2008.2	$-0.015(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.053)$	0.100	-1.48\%
Frequency	2009.1	-0.016 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.055$)	0.101	-1.57\%
Frequency	2009.2	$-0.017(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.059)$	0.101	-1.67\%
Frequency	2010.1	$-0.019(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.053)$	0.111	-1.83\%
Frequency	2010.2	-0.020 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.049$)	0.121	-2.01\%
Frequency	2011.1	$-0.022(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.055)$	0.119	-2.13\%
Frequency	2011.2	$-0.024(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.048)$	0.134	-2.38\%
Frequency	2012.1	$-0.027(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.039)$	0.156	-2.70\%
Frequency	2012.2	$-0.033(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.021)$	0.210	-3.25\%
Frequency	2013.1	$-0.038(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.015$)	0.247	-3.74\%
Frequency	2013.2	-0.045 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.009$)	0.298	-4.37\%
Frequency	2014.1	$-0.050(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.009)$	0.317	-4.85\%
Frequency	2014.2	$-0.054(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.011)$	0.320	-5.27\%
Frequency	2015.1	$-0.062(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.009)$	0.358	-6.04\%
Frequency	2015.2	$-0.068(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.012)$	0.353	-6.54\%
Frequency	2016.1	$-0.076(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.012)$	0.370	-7.33\%
Frequency	2016.2	$-0.086(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.014)$	0.387	-8.27\%

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.029 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.079(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.126$)	0.523	+2.92\%
Loss Cost	2004.2	0.030 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	$0.085(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.107$)	0.519	+3.02\%
Loss Cost	2005.1	0.030 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	$0.083(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.127)$	0.509	+3.06\%
Loss Cost	2005.2	0.031 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.087(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.119)$	0.495	+3.13\%
Loss Cost	2006.1	$0.031(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.084(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.144)$	0.487	+3.18\%
Loss Cost	2006.2	$0.031(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.085(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.153)$	0.458	+3.20\%
Loss Cost	2007.1	0.032 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.083(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.176)$	0.446	+3.23\%
Loss Cost	2007.2	0.033 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.090(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.151)$	0.442	+3.37\%
Loss Cost	2008.1	0.034 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.086(\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.183)$	0.434	+3.45\%
Loss Cost	2008.2	0.035 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.093(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.165)$	0.424	+3.59\%
Loss Cost	2009.1	0.036 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.090(\mathrm{Cl}=+/-0.139 ; \mathrm{p}=0.193)$	0.411	+3.64\%
Loss Cost	2009.2	0.037 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$0.095(\mathrm{Cl}=+/-0.144 ; \mathrm{p}=0.188)$	0.390	+3.74\%
Loss Cost	2010.1	0.036 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.001$)	$0.097(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.196$)	0.366	+3.69\%
Loss Cost	2010.2	$0.036(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.002)$	$0.097(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.214)$	0.325	+3.70\%
Loss Cost	2011.1	0.036 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.005$)	$0.099(\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.227)$	0.302	+3.65\%
Loss Cost	2011.2	0.036 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.010$)	$0.098(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.251)$	0.255	+3.63\%
Loss Cost	2012.1	0.033 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.027$)	$0.109(\mathrm{Cl}=+/-0.181 ; \mathrm{p}=0.221$)	0.219	+3.32\%
Loss Cost	2012.2	$0.029(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.067$)	$0.095(\mathrm{Cl}=+/-0.187 ; \mathrm{p}=0.300)$	0.128	+2.90\%
Loss Cost	2013.1	$0.023(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.173)$	$0.116(\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.221$)	0.094	+2.28\%
Loss Cost	2013.2	$0.018(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.324)$	$0.101(\mathrm{Cl}=+/-0.201 ; \mathrm{p}=0.305$)	0.009	+1.77\%
Loss Cost	2014.1	$0.011(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.567)$	$0.121(\mathrm{Cl}=+/-0.210 ; \mathrm{p}=0.238)$	0.000	+1.12\%
Loss Cost	2014.2	$0.008(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.711)$	$0.112(\mathrm{Cl}=+/-0.223 ; \mathrm{p}=0.299)$	-0.045	+0.80\%
Loss Cost	2015.1	$-0.004(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.858)$	$0.147(\mathrm{Cl}=+/-0.228 ; \mathrm{p}=0.188)$	-0.004	-0.42\%
Loss Cost	2015.2	$-0.008(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.776)$	$0.138(\mathrm{Cl}=+/-0.245 ; \mathrm{p}=0.242)$	-0.030	-0.75\%
Loss Cost	2016.1	$-0.021(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.474$)	0.173 ($\mathrm{Cl}=+/-0.256 ; \mathrm{p}=0.165$)	0.039	-2.12\%
Loss Cost	2016.2	$-0.028(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.413)$	$0.158(\mathrm{Cl}=+/-0.278 ; \mathrm{p}=0.234)$	0.027	-2.80\%
Severity	2004.1	0.037 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.033(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.222)$	0.859	+3.74\%
Severity	2004.2	0.038 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.041(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.127)$	0.869	+3.87\%
Severity	2005.1	0.039 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.034(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.199)$	0.874	+3.99\%
Severity	2005.2	0.040 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.125)$	0.879	+4.10\%
Severity	2006.1	0.042 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.033(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.208)$	0.888	+4.25\%
Severity	2006.2	0.043 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.040 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.115$)	0.895	+4.39\%
Severity	2007.1	0.044 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.032(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.195)$	0.904	+4.55\%
Severity	2007.2	0.046 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.042(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.075)$	0.919	+4.75\%
Severity	2008.1	0.048 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.031(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.144)$	0.936	+4.97\%
Severity	2008.2	0.050 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.039(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.051)$	0.945	+5.15\%
Severity	2009.1	$0.052(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.030(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.099)$	0.956	+5.35\%
Severity	2009.2	$0.054(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.036(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.037)$	0.961	+5.50\%
Severity	2010.1	0.055 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.028(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.072)$	0.969	+5.69\%
Severity	2010.2	$0.057(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.034(\mathrm{Cl}=+/-0.030 ; p=0.030)$	0.971	+5.83\%
Severity	2011.1	$0.058(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.027(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.058)$	0.975	+5.99\%
Severity	2011.2	$0.060(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.033(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.014)$	0.979	+6.16\%
Severity	2012.1	$0.061(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.028(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.028)$	0.981	+6.30\%
Severity	2012.2	$0.062(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.030(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.024)$	0.979	+6.36\%
Severity	2013.1	$0.062(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.029(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.037)$	0.977	+6.40\%
Severity	2013.2	$0.062(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.030(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.043)$	0.973	+6.42\%
Severity	2014.1	$0.063(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.028(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.064)$	0.969	+6.46\%
Severity	2014.2	$0.062(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.027(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.091)$	0.962	+6.42\%
Severity	2015.1	$0.061(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.031(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.066)$	0.957	+6.27\%
Severity	2015.2	0.060 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.030(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.100)$	0.946	+6.19\%
Severity	2016.1	$0.059(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.032(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.102)$	0.935	+6.09\%
Severity	2016.2	0.058 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.029(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.155)$	0.916	+5.97\%
Frequency	2004.1	$-0.008(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.082)$	$0.046(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.352)$	0.050	-0.79\%
Frequency	2004.2	$-0.008(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.088)$	$0.044(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.382)$	0.049	-0.82\%
Frequency	2005.1	$-0.009(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.078)$	$0.049(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.346)$	0.056	-0.89\%
Frequency	2005.2	$-0.009(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.080)$	$0.046(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.385)$	0.057	-0.93\%
Frequency	2006.1	$-0.010(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.071$)	$0.051(\mathrm{Cl}=+/-0.110 ; p=0.348)$	0.064	-1.02\%
Frequency	2006.2	$-0.012(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.054)$	$0.044(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.427)$	0.077	-1.15\%
Frequency	2007.1	$-0.013(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.046)$	$0.051(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.376)$	0.087	-1.27\%
Frequency	2007.2	$-0.013(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.052)$	$0.048(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.413)$	0.085	-1.31\%
Frequency	2008.1	$-0.015(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.044$)	$0.056(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.362)$	0.096	-1.45\%
Frequency	2008.2	$-0.015(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.054)$	$0.054(\mathrm{Cl}=+/-0.127 ; \mathrm{p}=0.393)$	0.092	-1.48\%
Frequency	2009.1	-0.016 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.050$)	$0.060(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.354)$	0.097	-1.62\%
Frequency	2009.2	$-0.017(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.060)$	$0.058(\mathrm{Cl}=+/-0.137 ; \mathrm{p}=0.389)$	0.093	-1.67\%
Frequency	2010.1	$-0.019(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.047)$	$0.069(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.326)$	0.112	-1.89\%
Frequency	2010.2	-0.020 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.051$)	$0.064(\mathrm{Cl}=+/-0.147 ; \mathrm{p}=0.380)$	0.113	-2.01\%
Frequency	2011.1	$-0.022(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.049)$	$0.072(\mathrm{Cl}=+/-0.154 ; \mathrm{p}=0.342)$	0.117	-2.20\%
Frequency	2011.2	$-0.024(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.050)$	$0.065(\mathrm{Cl}=+/-0.160 ; p=0.409)$	0.122	-2.38\%
Frequency	2012.1	$-0.028(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.034$)	$0.081(\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.315$)	0.159	-2.80\%
Frequency	2012.2	$-0.033(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.023$)	$0.065(\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.430)$	0.195	-3.25\%
Frequency	2013.1	$-0.039(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.013$)	$0.088(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.299)$	0.253	-3.87\%
Frequency	2013.2	$-0.045(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.010$)	$0.071(\mathrm{Cl}=+/-0.178 ; \mathrm{p}=0.411$)	0.286	-4.37\%
Frequency	2014.1	$-0.051(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.008)$	$0.093(\mathrm{Cl}=+/-0.184 ; \mathrm{p}=0.302)$	0.323	-5.02\%
Frequency	2014.2	$-0.054(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.011$)	$0.085(\mathrm{Cl}=+/-0.196 ; \mathrm{p}=0.369)$	0.314	-5.27\%
Frequency	2015.1	$-0.065(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.007$)	0.115 ($\mathrm{Cl}=+/-0.200 ; p=0.234$)	0.382	-6.29\%
Frequency	2015.2	$-0.068(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.012)$	$0.109(\mathrm{Cl}=+/-0.215 ; \mathrm{p}=0.292)$	0.363	-6.54\%
Frequency	2016.1	$-0.081(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.009)$	$0.141(\mathrm{Cl}=+/-0.223 ; \mathrm{p}=0.192)$	0.415	-7.74\%
Frequency	2016.2	$-0.086(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.014)$	$0.129(\mathrm{Cl}=+/-0.242 ; \mathrm{p}=0.265)$	0.408	-8.27\%

DC

Coverage $=D C$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, trend_level_change, seasonality
Future Trend Start Date $=2013-01-01$

Fit	Start Date	Time	Seasonality	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2004.1	0.018 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.120$)	0.079 ($\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.125$)	0.019 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.309$)	0.524	+1.83\%	+3.80\%
Loss Cost	2004.2	$0.020(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.114)$	$0.083(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.117)$	$0.016(\mathrm{Cl}=+/-0.040 ; p=0.409)$	0.515	+2.04\%	+3.74\%
Loss Cost	2005.1	0.020 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.152$)	$0.083(\mathrm{Cl}=+/-0.109 ; p=0.128)$	$0.017(\mathrm{Cl}=+/-0.043 ; p=0.437)$	0.504	+2.03\%	+3.74\%
Loss Cost	2005.2	$0.021(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.171)$	0.085 ($\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.131)$	$0.015(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.512)$	0.486	+2.16\%	+3.71\%
Loss Cost	2006.1	$0.022(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.206)$	$0.084(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.146)$	$0.014(\mathrm{Cl}=+/-0.050 ; p=0.565)$	0.476	+2.23\%	+3.70\%
Loss Cost	2006.2	$0.021(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.290)$	$0.083(\mathrm{Cl}=+/-0.120 ; p=0.167)$	$0.016(\mathrm{Cl}=+/-0.055 ; p=0.560)$	0.446	+2.09\%	+3.72\%
Loss Cost	2007.1	0.020 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.366$)	$0.084(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.178)$	$0.017(\mathrm{Cl}=+/-0.060 ; p=0.579)$	0.432	+2.03\%	+3.73\%
Loss Cost	2007.2	0.026 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.310)$	$0.089(\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.164)$	$0.010(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.764)$	0.423	+2.62\%	+3.65\%
Loss Cost	2008.1	0.029 ($\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.331$)	$0.087(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.190)$	$0.007(\mathrm{Cl}=+/-0.076 ; p=0.858)$	0.413	+2.92\%	+3.61\%
Loss Cost	2008.2	0.038 ($\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.277)$	$0.093(\mathrm{Cl}=+/-0.137 ; p=0.173)$	$-0.004(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.933)$	0.401	+3.88\%	+3.51\%
Loss Cost	2009.1	$0.044(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.297)$	$0.090(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.205)$	$-0.010(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.841)$	0.388	+4.49\%	+3.46\%
Loss Cost	2009.2	$0.059(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.257)$	$0.097(\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.187)$	$-0.026(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.660)$	0.369	+6.08\%	+3.35\%
Loss Cost	2010.1	$0.064(\mathrm{Cl}=+/-0.135 ; \mathrm{p}=0.338)$	0.095 ($\mathrm{Cl}=+/-0.154 ; \mathrm{p}=0.214)$	$-0.031(\mathrm{Cl}=+/-0.150 ; \mathrm{p}=0.674)$	0.343	+6.57\%	+3.33\%
Loss Cost	2010.2	$0.083(\mathrm{Cl}=+/-0.181 ; \mathrm{p}=0.350)$	$0.100(\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.208)$	$-0.051(\mathrm{Cl}=+/-0.197 ; \mathrm{p}=0.592)$	0.303	+8.70\%	+3.25\%
Loss Cost	2011.1	$0.116(\mathrm{Cl}=+/-0.263 ; \mathrm{p}=0.370)$	$0.094(\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.258)$	$-0.085(\mathrm{Cl}=+/-0.278 ; \mathrm{p}=0.532)$	0.282	+12.27\%	+3.17\%
Loss Cost	2011.2	0.223 ($\mathrm{Cl}=+/-0.429 ; \mathrm{p}=0.291$)	$0.105(\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.223)$	$-0.193(\mathrm{Cl}=+/-0.443 ; \mathrm{p}=0.372)$	0.249	+24.98\%	+3.00\%
Loss Cost	2012.1	$0.387(\mathrm{Cl}=+/-0.951 ; \mathrm{p}=0.404)$	0.095 ($\mathrm{Cl}=+/-0.187 ; \mathrm{p}=0.300$)	$-0.358(\mathrm{Cl}=+/-0.962 ; \mathrm{p}=0.444)$	0.203	+47.24\%	+2.90\%
Severity	2004.1	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.003)$	$0.034(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.056 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.989	+0.53\%	+6.34\%
Severity	2004.2	$0.005(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.006)$	0.035 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.056(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.989	+0.54\%	+6.34\%
Severity	2005.1	$0.005(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.023)$	$0.036(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.057(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.989	+0.48\%	+6.35\%
Severity	2005.2	$0.004(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.088)$	$0.034(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.058(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.989	+0.38\%	+6.38\%
Severity	2006.1	$0.004(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.149)$	0.035 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.058(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.989	+0.36\%	+6.38\%
Severity	2006.2	$0.003(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.282)$	$0.034(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.059(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.988	+0.30\%	+6.39\%
Severity	2007.1	$0.002(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.456)$	$0.034(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.060(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.988	+0.23\%	+6.40\%
Severity	2007.2	$0.004(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.314)$	0.036 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.058(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.988	+0.36\%	+6.38\%
Severity	2008.1	$0.006(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.124)$	$0.033(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.001)$	$0.055(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.988	+0.63\%	+6.35\%
Severity	2008.2	$0.007(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.158)$	$0.034(\mathrm{Cl}=+/-0.019 ; p=0.001)$	$0.055(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.988	+0.68\%	+6.34\%
Severity	2009.1	$0.009(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.133)$	$0.033(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.002)$	$0.053(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.987	+0.88\%	+6.33\%
Severity	2009.2	$0.007(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.321)$	$0.032(\mathrm{Cl}=+/-0.020 ; p=0.003)$	$0.054(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.987	+0.70\%	+6.34\%
Severity	2010.1	$0.009(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.340)$	$0.031(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.005)$	$0.053(\mathrm{Cl}=+/-0.020 ; p=0.000)$	0.986	+0.86\%	+6.33\%
Severity	2010.2	$0.003(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.824)$	0.030 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.009$)	$0.059(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.985	+0.26\%	+6.36\%
Severity	2011.1	$-0.003(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.883)$	$0.031(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.010)$	$0.064(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.002)$	0.984	-0.25\%	+6.37\%
Severity	2011.2	-0.002 ($\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.952$)	$0.031(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.014)$	$0.063(\mathrm{Cl}=+/-0.060 ; p=0.039)$	0.983	-0.17\%	+6.37\%
Severity	2012.1	$0.011(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.855)$	$0.030(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.024)$	0.050 ($\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.430)$	0.981	+1.15\%	+6.36\%
Frequency	2004.1	0.013 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.225)$	0.045 ($\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.334)$	$-0.037(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.036)$	0.143	+1.29\%	-2.39\%
Frequency	2004.2	$0.015(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.201)$	0.049 ($\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.310$)	$-0.040(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.035)$	0.146	+1.49\%	-2.45\%
Frequency	2005.1	0.015 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.229)$	0.048 ($\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.333)$	-0.040 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.044$)	0.143	+1.55\%	-2.46\%
Frequency	2005.2	$0.018(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.216)$	$0.051(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.315)$	$-0.043(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.046)$	0.145	+1.77\%	-2.51\%
Frequency	2006.1	0.018 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.245$)	0.050 ($\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.341$)	$-0.044(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.059)$	0.143	+1.86\%	-2.52\%
Frequency	2006.2	$0.018(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.320)$	0.049 ($\mathrm{Cl}=+/-0.109 ; p=0.364)$	$-0.043(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.088)$	0.137	+1.79\%	-2.51\%
Frequency	2007.1	0.018 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.381$)	0.049 ($\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.380)$	$-0.043(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.120)$	0.134	+1.79\%	-2.51\%
Frequency	2007.2	$0.022(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.338)$	$0.053(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.355)$	$-0.048(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.117)$	0.135	+2.25\%	-2.57\%
Frequency	2008.1	$0.023(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.404)$	$0.053(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.374)$	-0.049 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.160)$	0.131	+2.28\%	-2.58\%
Frequency	2008.2	$0.031(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.327)$	$0.059(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.337)$	$-0.058(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.141)$	0.135	+3.18\%	-2.66\%
Frequency	2009.1	0.035 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.359$)	$0.057(\mathrm{Cl}=+/-0.130 ; p=0.374)$	$-0.063(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.175)$	0.131	+3.59\%	-2.70\%
Frequency	2009.2	$0.052(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.272)$	$0.065(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.327$)	$-0.081(\mathrm{Cl}=+/-0.110 ; p=0.144)$	0.139	+5.34\%	-2.81\%
Frequency	2010.1	$0.055(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.363)$	$0.064(\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.356)$	$-0.084(\mathrm{Cl}=+/-0.137 ; \mathrm{p}=0.218)$	0.134	+5.66\%	-2.83\%
Frequency	2010.2	$0.081(\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.319)$	$0.071(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.325)$	$-0.110(\mathrm{Cl}=+/-0.179 ; \mathrm{p}=0.212)$	0.139	+8.41\%	-2.92\%
Frequency	2011.1	0.118 ($\mathrm{Cl}=+/-0.238 ; \mathrm{p}=0.313$)	$0.064(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.396)$	-0.149 ($\mathrm{Cl}=+/-0.251 ; \mathrm{p}=0.231$)	0.138	+12.55\%	-3.01\%
Frequency	2011.2	0.225 ($\mathrm{Cl}=+/-0.388 ; \mathrm{p}=0.240$)	0.075 ($\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.337)$	$-0.257(\mathrm{Cl}=+/-0.400 ; \mathrm{p}=0.195)$	0.156	+25.19\%	-3.17\%
Frequency	2012.1	0.375 ($\mathrm{Cl}=+/-0.859 ; \mathrm{p}=0.371$)	$0.065(\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.430)$	$-0.409(\mathrm{Cl}=+/-0.869 ; \mathrm{p}=0.336)$	0.158	+45.57\%	-3.25\%

DC

Coverage $=D C$
End Trend Period $=2022$.
Excluded Points = NA
Parameters Included: time, trend_level_change, seasonality, mobility
Future Trend Stort Date $=$ 2013-01_
Future Trend Start Date $=$ 2013-01-01

Fit	Start Date	Time	Seasonality	Mobility	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2004.1	0.008 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.103$)	0.034 ($\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.137$)	0.016 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.066 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	0.909	+0.85\%	+7.74\%
Loss Cost	2004.2	$0.009(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.115$)	$0.035(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.137)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.065(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.906	+0.90\%	+7.72\%
Loss Cost	2005.1	$0.009(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.165)$	$0.036(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.144)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.066(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.904	+0.87\%	+7.73\%
Loss Cost	2005.2	$0.008(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.261)$	$0.034(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.172)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.067(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.901	+0.78\%	+7.76\%
Loss Cost	2006.1	$0.008(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.292)$	$0.034(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.191)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.066(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.899	+0.82\%	+7.75\%
Loss Cost	2006.2	$0.004(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.655$)	$0.028(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.278)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.072(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.898	+0.38\%	+7.86\%
Loss Cost	2007.1	$0.003(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.775)$	$0.029(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.275)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.073(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.896	+0.27\%	+7.88\%
Loss Cost	2007.2	$0.004(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.694)$	$0.031(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.267)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.071(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	0.893	+0.44\%	+7.85\%
Loss Cost	2008.1	$0.007(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.601)$	$0.029(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.313)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.069(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	0.892	+0.67\%	+7.82\%
Loss Cost	2008.2	$0.009(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.533)$	$0.031(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.298)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.065(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.002)$	0.889	+0.95\%	+7.78\%
Loss Cost	2009.1	$0.015(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.427)$	$0.028(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.360)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.060(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.012)$	0.887	+1.46\%	+7.73\%
Loss Cost	2009.2	$0.019(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.414)$	$0.030(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.347)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.056(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.048)$	0.882	+1.87\%	+7.69\%
Loss Cost	2010.1	$0.022(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.453)$	$0.029(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.385)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.052(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.123)$	0.877	+2.20\%	+7.67\%
Loss Cost	2010.2	0.019 ($\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.628$)	$0.028(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.421)$	0.016 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.055(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.209)$	0.869	+1.91\%	+7.69\%
Loss Cost	2011.1	$0.049(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.381)$	$0.022(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.534)$	$0.016(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.024(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.680)$	0.868	+5.01\%	+7.61\%
Loss Cost	2011.2	$0.092(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.314)$	$0.027(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.467)$	$0.016(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.020(\mathrm{Cl}=+/-0.195 ; \mathrm{p}=0.831)$	0.861	+9.69\%	+7.50\%
Loss Cost	2012.1	$0.276(\mathrm{Cl}=+/-0.400 ; \mathrm{p}=0.164)$	$0.016(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.683)$	$0.016(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.205(\mathrm{Cl}=+/-0.405 ; \mathrm{p}=0.301)$	0.861	+31.78\%	+7.40\%
Severity	2004.1	$0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.004$)	$0.030(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.060(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.992	+0.44\%	+6.70\%
Severity	2004.2	$0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.008$)	0.030 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.060(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.992	+0.44\%	+6.70\%
Severity	2005.1	$0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.035)$	$0.031(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.061(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.992	+0.37\%	+6.72\%
Severity	2005.2	$0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.169)$	$0.029(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.000)$	$0.063(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.992	+0.26\%	+6.76\%
Severity	2006.1	$0.002(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.264)$	$0.030(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.063(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.992	+0.23\%	+6.76\%
Severity	2006.2	$0.001(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.539)$	$0.029(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.000)$	$0.064(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.992	+0.14\%	+6.78\%
Severity	2007.1	$0.001(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.783)$	$0.029(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.065(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.992	+0.07\%	+6.80\%
Severity	2007.2	$0.002(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.587)$	$0.030(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.064(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.992	+0.16\%	+6.78\%
Severity	2008.1	$0.004(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.199)$	$0.028(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.061(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.993	+0.43\%	+6.74\%
Severity	2008.2	$0.004(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.288)$	$0.028(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.061(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.992	+0.42\%	+6.75\%
Severity	2009.1	$0.006(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.201)$	$0.027(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.002)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.059(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.992	+0.60\%	+6.73\%
Severity	2009.2	$0.003(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.577)$	$0.026(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.004)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.062(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.992	+0.31\%	+6.76\%
Severity	2010.1	$0.005(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.520)$	$0.025(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.006)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.061(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.991	+0.46\%	+6.75\%
Severity	2010.2	$-0.004(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.688)$	$0.023(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.012)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.069(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.991	-0.37\%	+6.80\%
Severity	2011.1	$-0.009(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.492$)	$0.024(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.012)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.075(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.991	-0.91\%	+6.81\%
Severity	2011.2	$-0.015(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.501)$	$0.023(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.018)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.001)$	$0.081(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.002)$	0.990	-1.46\%	+6.83\%
Severity	2012.1	$0.000(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.995)$	$0.022(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.032)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.002)$	$0.066(\mathrm{Cl}=+/-0.100 ; \mathrm{p}=0.185)$	0.989	+0.03\%	+6.82\%
Frequency	2004.1	$0.004(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.393)$	$0.004(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.849)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.006(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.502)$	0.831	+0.40\%	+0.97\%
Frequency	2004.2	0.005 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.379$)	$0.005(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.817)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.582)$	0.831	+0.46\%	+0.96\%
Frequency	2005.1	$0.005(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.389)$	$0.004(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.842)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.637)$	0.830	+0.49\%	+0.95\%
Frequency	2005.2	$0.005(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.414)$	$0.005(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.832)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.687)$	0.829	+0.52\%	+0.94\%
Frequency	2006.1	$0.006(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.413)$	$0.004(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.865)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.758)$	0.829	+0.59\%	+0.93\%
Frequency	2006.2	$0.002(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.763)$	$0.000(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.987$)	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.515)$	0.834	+0.24\%	+1.01\%
Frequency	2007.1	$0.002(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.821)$	$0.000(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.999)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.530)$	0.833	+0.20\%	+1.02\%
Frequency	2007.2	$0.003(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.791$)	$0.001(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.979)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.007(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.614)$	0.832	+0.27\%	+1.00\%
Frequency	2008.1	$0.002(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.837)$	$0.001(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.973)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.637)$	0.831	+0.25\%	+1.01\%
Frequency	2008.2	$0.005(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.707)$	$0.003(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.913)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.815)$	0.830	+0.54\%	+0.97\%
Frequency	2009.1	$0.009(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.618)$	$0.001(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.967)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.969)$	0.830	+0.86\%	+0.94\%
Frequency	2009.2	$0.015(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.467)$	$0.005(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.875)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.007(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.788)$	0.831	+1.55\%	+0.87\%
Frequency	2010.1	$0.017(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.526)$	$0.004(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.896)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.009(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.781$)	0.830	+1.73\%	+0.86\%
Frequency	2010.2	$0.023(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.536)$	$0.006(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.863)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.014(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.722)$	0.829	+2.29\%	+0.83\%
Frequency	2011.1	$0.058(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.264)$	$-0.001(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.972)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.051(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.359)$	0.835	+5.97\%	+0.74\%
Frequency	2011.2	$0.107(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.208)$	$0.004(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.898)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.101(\mathrm{Cl}=+/-0.179 ; \mathrm{p}=0.253)$	0.838	+11.32\%	+0.63\%
Frequency	2012.1	$0.276(\mathrm{Cl}=+/-0.368 ; \mathrm{p}=0.132)$	$-0.006(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.862)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.270(\mathrm{Cl}=+/-0.373 ; \mathrm{p}=0.145)$	0.847	+31.73\%	+0.55\%

DC

Coverage $=D C$
End Trend Period $=2012.1$
Excluded Points = NA
Parameters Included: time

				Implied Trend
Fit	Start Date	Time	Adjusted R^2	Rate
Loss Cost	2004.1	0.003 ($\mathrm{Cl}=+/-0.010 ; p=0.472)$	-0.029	+0.34\%
Loss Cost	2004.2	0.003 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.612)$	-0.051	+0.27\%
Loss Cost	2005.1	0.002 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.703$)	-0.064	+0.24\%
Loss Cost	2005.2	-0.001 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.877)$	-0.081	-0.10\%
Loss Cost	2006.1	-0.001 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.927$)	-0.090	-0.07\%
Loss Cost	2006.2	$-0.010(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.121)$	0.146	-1.04\%
Loss Cost	2007.1	$-0.014(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.087)$	0.211	-1.35\%
Loss Cost	2007.2	$-0.016(\mathrm{Cl}=+/-0.020 ; p=0.089)$	0.234	-1.63\%
Loss Cost	2008.1	$-0.015(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.195)$	0.116	-1.50\%
Loss Cost	2008.2	-0.019 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.196$)	0.137	-1.91\%
Loss Cost	2009.1	$-0.015(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.419)$	-0.039	-1.54\%
Loss Cost	2009.2	$-0.024(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.361)$	0.012	-2.41\%
Loss Cost	2010.1	$-0.031(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.446)$	-0.062	-3.08\%
Loss Cost	2010.2	$-0.085(\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.111)$	0.686	-8.15\%
Loss Cost	2011.1	$-0.080(\mathrm{Cl}=+/-0.874 ; \mathrm{p}=0.453)$	0.147	-7.66\%
Loss Cost	2011.2	-0.199 ($\mathrm{Cl}=+/-\mathrm{NaN} ; \mathrm{p}=\mathrm{NaN})$	NaN	-18.03\%
Loss Cost	2012.1	NA (CI = +/-NA; $\mathrm{p}=\mathrm{NA}$)	0.000	0.00\%
Severity	2004.1	0.006 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.047)$	0.187	+0.56\%
Severity	2004.2	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.106)$	0.117	+0.51\%
Severity	2005.1	$0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.161)$	0.080	+0.50\%
Severity	2005.2	$0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.491)$	-0.040	+0.25\%
Severity	2006.1	$0.003(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.458)$	-0.035	+0.31\%
Severity	2006.2	$0.001(\mathrm{Cl}=+/-0.010 ; p=0.895)$	-0.098	+0.06\%
Severity	2007.1	$0.001(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.893)$	-0.109	+0.07\%
Severity	2007.2	$0.000(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.950)$	-0.124	+0.04\%
Severity	2008.1	$0.007(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.332)$	0.011	+0.70\%
Severity	2008.2	0.005 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.583)$	-0.105	+0.49\%
Severity	2009.1	$0.012(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.274)$	0.078	+1.23\%
Severity	2009.2	$0.005(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.736)$	-0.210	+0.46\%
Severity	2010.1	0.015 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.439)$	-0.055	+1.51\%
Severity	2010.2	$-0.008(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.716)$	-0.379	-0.77\%
Severity	2011.1	$-0.009(\mathrm{Cl}=+/-0.521 ; p=0.861)$	-0.906	-0.91\%
Severity	2011.2	-0.080 ($\mathrm{Cl}=+/-\mathrm{NaN} ; p=\mathrm{NaN}$)	NaN	-7.71\%
Severity	2012.1	NA (CI = +/-NA; $\mathrm{p}=\mathrm{NA})$	0.000	0.00\%
Frequency	2004.1	$-0.002(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.532)$	-0.038	-0.22\%
Frequency	2004.2	-0.002 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.555)$	-0.044	-0.23\%
Frequency	2005.1	$-0.003(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.560)$	-0.048	-0.26\%
Frequency	2005.2	$-0.004(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.498)$	-0.041	-0.35\%
Frequency	2006.1	$-0.004(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.527)$	-0.050	-0.38\%
Frequency	2006.2	$-0.011(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.045)$	0.279	-1.10\%
Frequency	2007.1	$-0.014(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.025)$	0.383	-1.42\%
Frequency	2007.2	$-0.017(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.028)$	0.405	-1.67\%
Frequency	2008.1	$-0.022(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.015)$	0.537	-2.19\%
Frequency	2008.2	$-0.024(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.033)$	0.487	-2.39\%
Frequency	2009.1	-0.028 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.060$)	0.447	-2.73\%
Frequency	2009.2	-0.029 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.147)$	0.308	-2.86\%
Frequency	2010.1	$-0.046(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.097)$	0.540	-4.53\%
Frequency	2010.2	$-0.077(\mathrm{Cl}=+/-0.056 ; p=0.027)$	0.920	-7.44\%
Frequency	2011.1	$-0.071(\mathrm{Cl}=+/-0.352 ; \mathrm{p}=0.238)$	0.733	-6.82\%
Frequency	2011.2	-0.119 ($\mathrm{Cl}=+/-\mathrm{NaN} ; \mathrm{p}=\mathrm{NaN})$	NaN	-11.19\%
Frequency	2012.1	NA (CI = +/-NA; p = NA)	0.000	0.00\%

DC

Coverage $=D C$
End Trend Period $=2012.1$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.003 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.373$)	0.056 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.009$)	0.337	+0.34\%
Loss Cost	2004.2	$0.004(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.354)$	0.058 ($\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.011$)	0.321	+0.41\%
Loss Cost	2005.1	$0.002(\mathrm{Cl}=+/-0.010 ; p=0.626)$	$0.062(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.010)$	0.352	+0.24\%
Loss Cost	2005.2	$0.001(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.891$)	0.058 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.021$)	0.288	+0.08\%
Loss Cost	2006.1	$-0.001(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.910)$	$0.061(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.024)$	0.297	-0.07\%
Loss Cost	2006.2	-0.009 ($\mathrm{Cl}=+/-0.011 ; p=0.119)$	0.044 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.030$)	0.453	-0.86\%
Loss Cost	2007.1	$-0.014(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.018)$	$0.053(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.006)$	0.669	-1.35\%
Loss Cost	2007.2	-0.013 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.057)$	$0.054(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.013$)	0.657	-1.30\%
Loss Cost	2008.1	-0.015 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.073$)	$0.057(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.019)$	0.615	-1.50\%
Loss Cost	2008.2	-0.014 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.203)$	0.060 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.037)$	0.599	-1.35\%
Loss Cost	2009.1	-0.015 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.276)$	$0.062(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.067)$	0.493	-1.54\%
Loss Cost	2009.2	-0.013 ($\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.524$)	$0.064(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.137)$	0.441	-1.33\%
Loss Cost	2010.1	-0.031 ($\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.262$)	0.079 ($\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.113$)	0.660	-3.08\%
Loss Cost	2010.2	$-0.064(\mathrm{Cl}=+/-0.197 ; \mathrm{p}=0.150)$	$0.052(\mathrm{Cl}=+/-0.220 ; p=0.205)$	0.937	-6.22\%
Loss Cost	2011.1	-0.080 ($\mathrm{Cl}=+/-\mathrm{NaN} ; \mathrm{p}=\mathrm{NaN})$	0.060 ($\mathrm{Cl}=+/-\mathrm{NaN} ; \mathrm{p}=\mathrm{NaN}$)	NaN	-7.66\%
Loss Cost	2011.2	-0.199 ($\mathrm{Cl}=+/-\mathrm{NaN} ; \mathrm{p}=\mathrm{NaN}$)	NA (Cl = +/-NA; p = NA)	NaN	-18.03\%
Loss Cost	2012.1	NA (CI = +/-NA; p = NA)	NA (CI = +/-NA; $\mathrm{p}=\mathrm{NA}$)	0.000	0.00\%
Severity	2004.1	$0.006(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.003)$	0.040 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	0.696	+0.56\%
Severity	2004.2	0.006 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.005$)	0.041 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	0.671	+0.60\%
Severity	2005.1	0.005 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.023$)	0.044 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	0.700	+0.50\%
Severity	2005.2	0.004 ($\mathrm{Cl}=+/-0.005 ; ~ p=0.099)$	0.040 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.641	+0.37\%
Severity	2006.1	0.003 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.217$)	0.042 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.001$)	0.648	+0.31\%
Severity	2006.2	$0.002(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.432)$	0.040 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.002)$	0.585	+0.23\%
Severity	2007.1	$0.001(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.817)$	0.043 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.002)$	0.629	+0.07\%
Severity	2007.2	$0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.366)$	0.047 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.002)$	0.704	+0.33\%
Severity	2008.1	0.007 ($\mathrm{Cl}=+/-0.007 ; ~ \mathrm{p}=0.059$)	0.042 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.002$)	0.801	+0.70\%
Severity	2008.2	$0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.052)$	0.045 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.003$)	0.808	+0.93\%
Severity	2009.1	0.012 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.039)$	0.042 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.007$)	0.848	+1.23\%
Severity	2009.2	$0.012(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.155)$	$0.041(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.030)$	0.736	+1.17\%
Severity	2010.1	0.015 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.225$)	0.038 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.092)$	0.722	+1.51\%
Severity	2010.2	$0.004(\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.814)$	0.029 ($\mathrm{Cl}=+/-0.185 ; \mathrm{p}=0.296)$	0.444	+0.39\%
Severity	2011.1	-0.009 ($\mathrm{Cl}=+/-\mathrm{NaN} ; \mathrm{p}=\mathrm{NaN})$	0.036 ($\mathrm{Cl}=+/-\mathrm{NaN} ; \mathrm{p}=\mathrm{NaN})$	NaN	-0.91\%
Severity	2011.2	-0.080 ($\mathrm{Cl}=+/-\mathrm{NaN} ; \mathrm{p}=\mathrm{NaN})$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	NaN	-7.71\%
Severity	2012.1	NA (CI = +/-NA; p = NA)	NA (CI = +/-NA; $\mathrm{p}=\mathrm{NA}$)	0.000	0.00\%
Frequency	2004.1	$-0.002(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.533)$	0.016 ($\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.344$)	-0.041	-0.22\%
Frequency	2004.2	$-0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.629)$	0.017 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.358)$	-0.051	-0.19\%
Frequency	2005.1	-0.003 ($\mathrm{Cl}=+/-0.010 ; p=0.561$)	0.019 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.343)$	-0.050	-0.26\%
Frequency	2005.2	$-0.003(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.574)$	0.018 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.403$)	-0.063	-0.29\%
Frequency	2006.1	$-0.004(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.532)$	0.020 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.394$)	-0.070	-0.38\%
Frequency	2006.2	-0.011 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.063$)	$0.004(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.808)$	0.205	-1.08\%
Frequency	2007.1	$-0.014(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.032)$	$0.011(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.557)$	0.337	-1.42\%
Frequency	2007.2	$-0.016(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.046)$	$0.007(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.729)$	0.333	-1.63\%
Frequency	2008.1	-0.022 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.020)$	0.016 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.426$)	0.518	-2.19\%
Frequency	2008.2	-0.023 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.060)$	0.015 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.532)$	0.435	-2.26\%
Frequency	2009.1	$-0.028(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.079)$	0.020 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.445$)	0.413	-2.73\%
Frequency	2009.2	$-0.025(\mathrm{Cl}=+/-0.057 ; p=0.256)$	0.023 ($\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.501$)	0.227	-2.47\%
Frequency	2010.1	-0.046 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.067$)	0.041 ($\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.154$)	0.804	-4.53\%
Frequency	2010.2	-0.068 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.023$)	0.023 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.076$)	0.998	-6.59\%
Frequency	2011.1	-0.071 ($\mathrm{Cl}=+/-\mathrm{NaN} ; \mathrm{p}=\mathrm{NaN})$	0.024 ($\mathrm{Cl}=+/-\mathrm{NaN} ; \mathrm{p}=\mathrm{NaN}$)	NaN	-6.82\%
Frequency	2011.2	-0.119 ($\mathrm{Cl}=+/-\mathrm{NaN} ; \mathrm{p}=\mathrm{NaN}$)	NA (Cl $=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	NaN	-11.19\%
Frequency	2012.1	NA (CI = +/-NA; p = NA)	NA (CI = +/-NA; p = NA)	0.000	0.00\%

DC

Coverage $=D C$
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: trend_level_change
Future Trend Start Date $=2013-01-01$

Fit	Start Date	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2004.1	0.093 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.961	0.00\%	+9.74\%
Loss Cost	2004.2	$0.093(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.961	0.00\%	+9.71\%
Loss Cost	2005.1	$0.092(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.960	0.00\%	+9.69\%
Loss Cost	2005.2	$0.092(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.962	0.00\%	+9.61\%
Loss Cost	2006.1	$0.092(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.961	0.00\%	+9.62\%
Loss Cost	2006.2	$0.090(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.968	0.00\%	+9.47\%
Loss Cost	2007.1	$0.090(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.967	0.00\%	+9.47\%
Loss Cost	2007.2	$0.091(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.967	0.00\%	+9.49\%
Loss Cost	2008.1	$0.091(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.968	0.00\%	+9.57\%
Loss Cost	2008.2	$0.092(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.967	0.00\%	+9.59\%
Loss Cost	2009.1	0.092 (CI $=+/-0.008 ; p=0.000)$	0.968	0.00\%	+9.68\%
Loss Cost	2009.2	$0.092(\mathrm{Cl}=+/-0.008 ; p=0.000)$	0.966	0.00\%	+9.68\%
Loss Cost	2010.1	0.093 (CI $=+/-0.008 ; p=0.000)$	0.965	0.00\%	+9.71\%
Loss Cost	2010.2	$0.092(\mathrm{Cl}=+/-0.009 ; p=0.000)$	0.963	0.00\%	+9.63\%
Loss Cost	2011.1	$0.094(\mathrm{Cl}=+/-0.009 ; p=0.000)$	0.966	0.00\%	+9.83\%
Loss Cost	2011.2	$0.094(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.963	0.00\%	+9.84\%
Loss Cost	2012.1	0.095 (CI $=+/-0.011 ; p=0.000)$	0.960	0.00\%	+9.94\%
Severity	2004.1	$0.068(\mathrm{Cl}=+/-0.004 ; p=0.000)$	0.974	0.00\%	+7.09\%
Severity	2004.2	0.068 (CI $=+/-0.004 ; p=0.000)$	0.975	0.00\%	+7.05\%
Severity	2005.1	$0.068(\mathrm{Cl}=+/-0.004 ; p=0.000)$	0.975	0.00\%	+7.02\%
Severity	2005.2	0.067 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.979	0.00\%	+6.95\%
Severity	2006.1	0.067 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.979	0.00\%	+6.95\%
Severity	2006.2	0.067 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.980	0.00\%	+6.90\%
Severity	2007.1	$0.067(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.980	0.00\%	+6.89\%
Severity	2007.2	0.067 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.979	0.00\%	+6.89\%
Severity	2008.1	$0.067(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.981	0.00\%	+6.95\%
Severity	2008.2	0.067 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.981	0.00\%	+6.90\%
Severity	2009.1	0.067 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.981	0.00\%	+6.93\%
Severity	2009.2	$0.066(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.983	0.00\%	+6.85\%
Severity	2010.1	$0.067(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.982	0.00\%	+6.88\%
Severity	2010.2	$0.066(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.984	0.00\%	+6.77\%
Severity	2011.1	$0.066(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.983	0.00\%	+6.80\%
Severity	2011.2	$0.066(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.981	0.00\%	+6.79\%
Severity	2012.1	0.067 ($\mathrm{Cl}=+/-0.005 ; p=0.000)$	0.982	0.00\%	+6.90\%
Frequency	2004.1	$0.025(\mathrm{Cl}=+/-0.005 ; p=0.000)$	0.753	0.00\%	+2.48\%
Frequency	2004.2	0.025 ($\mathrm{Cl}=+/-0.005 ; p=0.000)$	0.750	0.00\%	+2.49\%
Frequency	2005.1	0.025 ($\mathrm{Cl}=+/-0.005 ; p=0.000)$	0.747	0.00\%	+2.49\%
Frequency	2005.2	$0.025(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.743	0.00\%	+2.49\%
Frequency	2006.1	0.025 ($\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.740	0.00\%	+2.50\%
Frequency	2006.2	$0.024(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.754	0.00\%	+2.41\%
Frequency	2007.1	$0.024(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.749	0.00\%	+2.41\%
Frequency	2007.2	$0.024(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.750	0.00\%	+2.44\%
Frequency	2008.1	$0.024(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.746	0.00\%	+2.45\%
Frequency	2008.2	0.025 ($\mathrm{Cl}=+/-0.006 ; p=0.000$)	0.758	0.00\%	+2.51\%
Frequency	2009.1	0.025 ($\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.766	0.00\%	+2.57\%
Frequency	2009.2	$0.026(\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.778	0.00\%	+2.65\%
Frequency	2010.1	0.026 (CI $=+/-0.007 ; p=0.000)$	0.769	0.00\%	+2.65\%
Frequency	2010.2	0.026 (CI $=+/-0.007 ; p=0.000)$	0.761	0.00\%	+2.68\%
Frequency	2011.1	$0.028(\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.794	0.00\%	+2.84\%
Frequency	2011.2	0.028 (CI $=+/-0.008 ; p=0.000)$	0.780	0.00\%	+2.86\%
Frequency	2012.1	0.028 (CI = +/-0.009; p = 0.000)	0.755	0.00\%	+2.84\%

DC

Coverage $=$ DC
End Trend Period $=2022.2$
Excluded Points $=$ NA
Parameters Included: time, seasonality, mobility

Loss Cost	2004.1	$0.041(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.045 ($\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.214$)	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.767	+4.19\%
Loss Cost	2004.2	$0.043(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.053(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.141)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.778	+4.36\%
Loss Cost	2005.1	$0.044(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.045 ($\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.213$)	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.782	+4.52\%
Loss Cost	2005.2	0.046 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.052(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.158)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.785	+4.66\%
Loss Cost	2006.1	$0.048(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.042(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.252)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.794	+4.87\%
Loss Cost	2006.2	$0.048(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.046(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.223)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.786	+4.96\%
Loss Cost	2007.1	$0.050(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.036(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.335)$	$0.014(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.792	+5.16\%
Loss Cost	2007.2	$0.053(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.047 ($\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.208)$	0.014 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.810	+5.43\%
Loss Cost	2008.1	0.056 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	$0.034(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.355)$	0.014 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.827	+5.74\%
Loss Cost	2008.2	$0.058(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.043 ($\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.221)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.842	+6.02\%
Loss Cost	2009.1	$0.062(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.030 ($\mathrm{Cl}=+/-0.070 ; p=0.384$)	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.857	+6.36\%
Loss Cost	2009.2	$0.064(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.039(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.260)$	0.015 ($\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.865	+6.62\%
Loss Cost	2010.1	$0.067(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.029(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.402)$	0.016 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.869	+6.89\%
Loss Cost	2010.2	$0.068(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.034(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.336)$	0.016 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.865	+7.06\%
Loss Cost	2011.1	$0.072(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.022 ($\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.537)$	0.016 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.874	+7.43\%
Loss Cost	2011.2	$0.073(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.026(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.469)$	0.016 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.868	+7.59\%
Loss Cost	2012.1	$0.074(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.023 ($\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.547)$	0.016 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.860	+7.70\%
Severity	2004.1	0.034 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.040 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.137)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.097)$	0.867	+3.48\%
Severity	2004.2	$0.036(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.047 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.079)$	$-0.002(\mathrm{Cl}=+/-0.003 ; p=0.115)$	0.875	+3.62\%
Severity	2005.1	0.037 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.040 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.132)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.157)$	0.878	+3.75\%
Severity	2005.2	$0.038(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.046(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.085)$	$-0.002(\mathrm{Cl}=+/-0.003 ; p=0.186)$	0.882	+3.88\%
Severity	2006.1	0.040 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.038 (Cl $=+/-0.052 ; \mathrm{p}=0.152)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.259)$	0.889	+4.05\%
Severity	2006.2	$0.041(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.044(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.088)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.306)$	0.896	+4.21\%
Severity	2007.1	0.043 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.036 (Cl $=+/-0.051 ; \mathrm{p}=0.160)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.420)$	0.903	+4.40\%
Severity	2007.2	0.045 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.044(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.066)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.503)$	0.917	+4.63\%
Severity	2008.1	$0.048(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.032(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.141)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.740)$	0.934	+4.91\%
Severity	2008.2	$0.050(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.040 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.056)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.877)$	0.943	+5.12\%
Severity	2009.1	$0.053(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.029(\mathrm{Cl}=+/-0.037 ; p=0.123)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.802)$	0.955	+5.39\%
Severity	2009.2	$0.054(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.035 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.052$)	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.646)$	0.960	+5.58\%
Severity	2010.1	$0.057(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.025 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.117)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.327)$	0.969	+5.85\%
Severity	2010.2	$0.058(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.030 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.051$)	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.224)$	0.972	+6.02\%
Severity	2011.1	$0.061(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.022(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.116)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.076)$	0.978	+6.26\%
Severity	2011.2	$0.063(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.027(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.025)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.023)$	0.983	+6.48\%
Severity	2012.1	0.065 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.020 ($\mathrm{Cl}=+/-0.020 ; p=0.054$)	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.002)$	0.988	+6.72\%
Frequency	2004.1	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.004)$	$0.005(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.811)$	$0.014(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.833	+0.69\%
Frequency	2004.2	$0.007(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.004)$	$0.006(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.764$)	0.015 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.834	+0.71\%
Frequency	2005.1	$0.007(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.005)$	$0.005(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.816)$	0.015 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.834	+0.74\%
Frequency	2005.2	$0.008(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.006)$	0.006 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.791$)	0.015 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.834	+0.76\%
Frequency	2006.1	$0.008(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.008)$	$0.004(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.848)$	0.015 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.834	+0.79\%
Frequency	2006.2	$0.007(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.020)$	$0.001(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.950)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.837	+0.72\%
Frequency	2007.1	$0.007(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.026)$	$0.001(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.976)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.836	+0.73\%
Frequency	2007.2	$0.008(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.028)$	$0.002(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.928)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.837	+0.77\%
Frequency	2008.1	$0.008(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.037)$	$0.001(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.958)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.836	+0.79\%
Frequency	2008.2	0.009 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.034$)	$0.004(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.887$)	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.837	+0.86\%
Frequency	2009.1	$0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.036)$	$0.001(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.965$)	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.837	+0.92\%
Frequency	2009.2	0.010 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.035$)	$0.004(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.899)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.838	+0.99\%
Frequency	2010.1	$0.010(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.056)$	$0.004(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.894)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.837	+0.98\%
Frequency	2010.2	0.010 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.075$)	$0.004(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.896)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.836	+0.98\%
Frequency	2011.1	$0.011(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.073)$	0.000 ($\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.994$)	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.836	+1.09\%
Frequency	2011.2	$0.010(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.111)$	$-0.001(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.974$)	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.835	+1.05\%
Frequency	2012.1	$0.009(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.207)$	$0.003(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.925)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.836	+0.91\%

AB Total

Coverage $=A B$ Total
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality

| | | | | Seasonality | Adjusted R^2 |
| :---: | :---: | :---: | :---: | :---: | :---: | Rate Trend

AB Total

Coverage $=A B$ Total
End Trend Period $=2022.2$
Excluded Points $=$ NA
Parameters Included: time, seasonality, phase_in_scalar

						Implied Trend
Fit	Start Date	Time	Seasonality	Phase in Scalar	Adjusted R^2	Rate
Loss Cost	2011.1	-0.025 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.012$)	0.172 ($\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.011$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.348	-2.42\%
Loss Cost	2011.2	-0.026 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.013$)	$0.165(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.018)$	$N A(C l=+/-N A ; p=N A)$	0.356	-2.60\%
Loss Cost	2012.1	-0.032 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.004)$	$0.187(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.008)$	$N A(C l=+/-N A ; p=N A)$	0.432	-3.17\%
Loss Cost	2012.2	-0.037 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.002)$	$0.170(\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.015)$	$N A(C l=+/-N A ; p=N A)$	0.474	-3.65\%
Loss Cost	2013.1	$-0.044(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.001)$	$0.194(\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.006)$	$N A(C l=+/-N A ; p=N A)$	0.545	-4.31\%
Loss Cost	2013.2	$-0.048(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001)$	$0.181(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.011)$	$N A(C l=+/-N A ; p=N A)$	0.569	-4.71\%
Loss Cost	2014.1	$-0.055(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$0.200(\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.007)$	$N A(C l=+/-N A ; p=N A)$	0.596	-5.31\%
Loss Cost	2014.2	-0.059 ($\mathrm{Cl}=+/-0.029 ; p=0.001)$	$0.189(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.013)$	$N A(C l=+/-N A ; p=N A)$	0.608	-5.69\%
Loss Cost	2015.1	$-0.067(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.001)$	$0.212(\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.007)$	$N A(C l=+/-N A ; p=N A)$	0.637	-6.45\%
Loss Cost	2015.2	$-0.066(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.002)$	$0.213(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.012)$	$N A(C l=+/-N A ; p=N A)$	0.620	-6.42\%
Loss Cost	2016.1	-0.067 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.005$)	$0.215(\mathrm{Cl}=+/-0.171 ; \mathrm{p}=0.019)$	$N A(C l=+/-N A ; p=N A)$	0.546	-6.51\%
Loss Cost	2016.2	$-0.056(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.023)$	$0.239(\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.012)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.546	-5.47\%
Severity	2011.1	$0.008(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.084)$	$0.031(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.329)$	$N A(C l=+/-N A ; p=N A)$	0.101	+0.82\%
Severity	2011.2	$0.007(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.152)$	$0.028(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.402)$	$N A(C l=+/-N A ; p=N A)$	0.041	+0.73\%
Severity	2012.1	$0.006(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.307)$	$0.034(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.314)$	$N A(C l=+/-N A ; p=N A)$	0.017	+0.55\%
Severity	2012.2	$0.005(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.417)$	$0.032(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.372)$	$N A(C l=+/-N A ; p=N A)$	-0.024	+0.48\%
Severity	2013.1	$0.005(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.414)$	$0.030(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.427)$	$N A(C l=+/-N A ; p=N A)$	-0.028	+0.53\%
Severity	2013.2	$0.005(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.467)$	$0.030(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.455)$	$N A(C l=+/-N A ; p=N A)$	-0.050	+0.53\%
Severity	2014.1	$0.004(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.604)$	$0.033(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.434)$	$N A(C l=+/-N A ; p=N A)$	-0.061	+0.42\%
Severity	2014.2	$0.004(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.647)$	$0.033(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.463)$	$N A(C l=+/-N A ; p=N A)$	-0.082	+0.42\%
Severity	2015.1	$0.007(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.480)$	$0.024(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.607)$	$N A(C l=+/-N A ; p=N A)$	-0.079	+0.73\%
Severity	2015.2	$0.010(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.387)$	$0.031(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.532)$	$N A(C l=+/-N A ; p=N A)$	-0.059	+1.01\%
Severity	2016.1	0.020 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.107)$	$0.007(\mathrm{Cl}=+/-0.100 ; p=0.884)$	$N A(C l=+/-N A ; p=N A)$	0.085	+2.00\%
Severity	2016.2	$0.033(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.005)$	$0.035(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.342)$	$N A(C l=+/-N A ; p=N A)$	0.489	+3.32\%
Frequency	2011.1	$-0.033(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.003)$	$0.141(\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.049)$	$N A(C l=+/-N A ; p=N A)$	0.357	-3.22\%
Frequency	2011.2	-0.034 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.005)$	$0.137(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.065)$	$N A(C l=+/-N A ; p=N A)$	0.352	-3.31\%
Frequency	2012.1	$-0.038(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.004)$	$0.153(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.047)$	$N A(C l=+/-N A ; p=N A)$	0.374	-3.70\%
Frequency	2012.2	$-0.042(\mathrm{Cl}=+/-0.025 ; p=0.003)$	$0.138(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.077)$	$N A(C l=+/-N A ; p=N A)$	0.402	-4.11\%
Frequency	2013.1	-0.049 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.001)$	$0.164(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.037)$	$N A(C l=+/-N A ; p=N A)$	0.472	-4.82\%
Frequency	2013.2	$-0.054(\mathrm{Cl}=+/-0.029 ; p=0.001)$	$0.151(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.062)$	$N A(C l=+/-N A ; p=N A)$	0.490	-5.21\%
Frequency	2014.1	-0.059 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.001)$	$0.167(\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.049)$	$N A(C l=+/-N A ; p=N A)$	0.491	-5.70\%
Frequency	2014.2	$-0.063(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.002)$	$0.156(\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.077)$	$N A(C l=+/-N A ; p=N A)$	0.497	-6.08\%
Frequency	2015.1	-0.074 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.001$)	$0.188(\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.038)$	$N A(C l=+/-N A ; p=N A)$	0.561	-7.12\%
Frequency	2015.2	$-0.076(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.002)$	$0.181(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.058)$	$N A(C l=+/-N A ; p=N A)$	0.549	-7.36\%
Frequency	2016.1	-0.087 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.002$)	$0.208(\mathrm{Cl}=+/-0.197 ; \mathrm{p}=0.040)$	$N A(C l=+/-N A ; p=N A)$	0.565	-8.35\%
Frequency	2016.2	$-0.089(\mathrm{Cl}=+/-0.057 ; p=0.006)$	$0.205(\mathrm{Cl}=+/-0.215 ; \mathrm{p}=0.060)$	$N A(C l=+/-N A ; p=N A)$	0.545	-8.50\%

AB Total

Coverage $=A B$ Total
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, phase_in_scalar

Fit	Start Date	Time	Phase in Scalar	Adjusted R^2	Implied Trend Rate
Loss Cost	2011.1	-0.023 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.036$)	$N A(C l=+/-N A ; p=N A)$	0.148	-2.25\%
Loss Cost	2011.2	$-0.026(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.024)$	$N A(C l=+/-N A ; p=N A)$	0.182	-2.60\%
Loss Cost	2012.1	$-0.030(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.019)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.209	-2.95\%
Loss Cost	2012.2	$-0.037(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.006)$	$N A(C l=+/-N A ; p=N A)$	0.300	-3.65\%
Loss Cost	2013.1	$-0.041(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.005)$	$N A(C l=+/-N A ; p=N A)$	0.320	-4.03\%
Loss Cost	2013.2	$-0.048(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.003)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.387	-4.71\%
Loss Cost	2014.1	$-0.051(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.004)$	$N A(C l=+/-N A ; p=N A)$	0.372	-4.95\%
Loss Cost	2014.2	$-0.059(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.003)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.423	-5.69\%
Loss Cost	2015.1	$-0.062(\mathrm{Cl}=+/-0.040 ; p=0.005)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.402	-5.98\%
Loss Cost	2015.2	$-0.066(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.007$)	$N A(C l=+/-N A ; p=N A)$	0.393	-6.42\%
Loss Cost	2016.1	$-0.061(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.026$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.296	-5.89\%
Loss Cost	2016.2	$-0.056(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.067$)	$N A(C l=+/-N A ; p=N A)$	0.206	-5.47\%
Severity	2011.1	$0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.072)$	$N A(C l=+/-N A ; p=N A)$	0.101	+0.86\%
Severity	2011.2	$0.007(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.149)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.054	+0.73\%
Severity	2012.1	$0.006(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.271)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.013	+0.60\%
Severity	2012.2	$0.005(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.415)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.015	+0.48\%
Severity	2013.1	$0.006(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.370)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.008	+0.58\%
Severity	2013.2	$0.005(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.461)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.025	+0.53\%
Severity	2014.1	$0.005(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.546)$	$N A(C l=+/-N A ; p=N A)$	-0.038	+0.48\%
Severity	2014.2	$0.004(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.642)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.051	+0.42\%
Severity	2015.1	$0.008(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.432)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.024	+0.78\%
Severity	2015.2	0.010 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.375)$	$N A(C l=+/-N A ; p=N A)$	-0.011	+1.01\%
Severity	2016.1	0.020 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.087)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.160	+2.02\%
Severity	2016.2	$0.033(\mathrm{Cl}=+/-0.020 ; p=0.005)$	$N A(C l=+/-N A ; p=N A)$	0.489	+3.32\%
Frequency	2011.1	$-0.031(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.007)$	$N A(C l=+/-N A ; p=N A)$	0.258	-3.08\%
Frequency	2011.2	$-0.034(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.007)$	$N A(C l=+/-N A ; p=N A)$	0.265	-3.31\%
Frequency	2012.1	$-0.036(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.008)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.264	-3.52\%
Frequency	2012.2	$-0.042(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.004)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.323	-4.11\%
Frequency	2013.1	$-0.047(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.003)$	$N A(C l=+/-N A ; p=N A)$	0.352	-4.58\%
Frequency	2013.2	$-0.054(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.002)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.399	-5.21\%
Frequency	2014.1	$-0.056(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.004)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.376	-5.41\%
Frequency	2014.2	$-0.063(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.003)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.408	-6.08\%
Frequency	2015.1	$-0.069(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.004)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.424	-6.71\%
Frequency	2015.2	$-0.076(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.005$)	$N A(C l=+/-N A ; p=N A)$	0.431	-7.36\%
Frequency	2016.1	$-0.081(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.009)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.405	-7.76\%
Frequency	2016.2	$-0.089(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.012)$	$N A(C l=+/-N A ; p=N A)$	0.401	-8.50\%

AB Total

Coverage $=A B$ Total
End Trend Period = 2022.2
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_trend

Fit	Start Date	Time	Seasonality	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	-0.025 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.012$)	0.172 ($\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.011$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.348	-2.42\%	-2.42\%
Loss Cost	2011.2	$-0.026(\mathrm{Cl}=+/-0.020 ; p=0.013)$	$0.165(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.018)$	$N A(C l e+/-N A ; p=N A)$	0.356	-2.60\%	-2.60\%
Loss Cost	2012.1	$-0.032(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.004)$	$0.187(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.008)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.432	-3.17\%	-3.17\%
Loss Cost	2012.2	$-0.037(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.002)$	0.170 ($\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.015$)	NA (Cl $=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.474	-3.65\%	-3.65\%
Loss Cost	2013.1	-0.044 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.001$)	$0.194(\mathrm{Cl}=+/-0.130 ; p=0.006)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.545	-4.31\%	-4.31\%
Loss Cost	2013.2	$-0.048(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001)$	$0.181(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.011)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.569	-4.71\%	-4.71\%
Loss Cost	2014.1	$-0.055(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.200 ($\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.007$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.596	-5.31\%	-5.31\%
Loss Cost	2014.2	$-0.059(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001)$	$0.189(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.013)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.608	-5.69\%	-5.69\%
Loss Cost	2015.1	$-0.067(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.001)$	0.212 ($\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.007)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.637	-6.45\%	-6.45\%
Loss Cost	2015.2	$-0.066(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.002)$	0.213 ($\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.012$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.620	-6.42\%	-6.42\%
Loss Cost	2016.1	$-0.067(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.005)$	0.215 ($\mathrm{Cl}=+/-0.171 ; \mathrm{p}=0.019)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.546	-6.51\%	-6.51\%
Loss Cost	2016.2	$-0.056(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.023)$	$0.239(\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.012)$	$N A(C l=+/-N A ; p=N A)$	0.546	-5.47\%	-5.47\%
Severity	2011.1	$0.008(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.084)$	$0.031(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.329)$	$N A(C l e+/-N A ; p=N A)$	0.101	+0.82\%	+0.82\%
Severity	2011.2	$0.007(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.152)$	0.028 ($\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.402)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.041	+0.73\%	+0.73\%
Severity	2012.1	$0.006(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.307)$	$0.034(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.314)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.017	+0.55\%	+0.55\%
Severity	2012.2	$0.005(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.417)$	$0.032(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.372)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	-0.024	+0.48\%	+0.48\%
Severity	2013.1	$0.005(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.414)$	0.030 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.427$)	NA (Cl $=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.028	+0.53\%	+0.53\%
Severity	2013.2	$0.005(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.467)$	0.030 ($\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.455$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	-0.050	+0.53\%	+0.53\%
Severity	2014.1	$0.004(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.604)$	$0.033(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.434)$	$N A(C l=+/-N A ; p=N A)$	-0.061	+0.42\%	+0.42\%
Severity	2014.2	$0.004(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.647)$	$0.033(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.463)$	NA (Cl $=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.082	+0.42\%	+0.42\%
Severity	2015.1	$0.007(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.480)$	$0.024(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.607)$	$N A(C l=+/-N A ; p=N A)$	-0.079	+0.73\%	+0.73\%
Severity	2015.2	0.010 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.387)$	$0.031(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.532)$	NA (Cl $=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.059	+1.01\%	+1.01\%
Severity	2016.1	$0.020(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.107)$	$0.007(\mathrm{Cl}=+/-0.100 ; p=0.884)$	$N A(C l=+/-N A ; p=N A)$	0.085	+2.00\%	+2.00\%
Severity	2016.2	$0.033(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.005)$	$0.035(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.342)$	$N A(C l=+/-N A ; p=N A)$	0.489	+3.32\%	+3.32\%
Frequency	2011.1	$-0.033(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.003)$	0.141 ($\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.049$)	$N A(C l e+/-N A ; p=N A)$	0.357	-3.22\%	-3.22\%
Frequency	2011.2	$-0.034(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.005)$	$0.137(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.065)$	$N A(C l=+/-N A ; p=N A)$	0.352	-3.31\%	-3.31\%
Frequency	2012.1	$-0.038(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.004)$	$0.153(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.047)$	$N A(C l=+/-N A ; p=N A)$	0.374	-3.70\%	-3.70\%
Frequency	2012.2	$-0.042(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.003)$	0.138 ($\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.077)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.402	-4.11\%	-4.11\%
Frequency	2013.1	$-0.049(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.001)$	$0.164(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.037)$	$N A(C l=+/-N A ; p=N A)$	0.472	-4.82\%	-4.82\%
Frequency	2013.2	-0.054 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001$)	$0.151(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.062)$	$N A(C l=+/-N A ; p=N A)$	0.490	-5.21\%	-5.21\%
Frequency	2014.1	$-0.059(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.001)$	$0.167(\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.049)$	$N A(C l=+/-N A ; p=N A)$	0.491	-5.70\%	-5.70\%
Frequency	2014.2	$-0.063(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.002)$	0.156 ($\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.077)$	$N A(C l=+/-N A ; p=N A)$	0.497	-6.08\%	-6.08\%
Frequency	2015.1	$-0.074(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.001)$	0.188 ($\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.038)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.561	-7.12\%	-7.12\%
Frequency	2015.2	$-0.076(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.002)$	$0.181(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.058)$	$N A(C l=+/-N A ; p=N A)$	0.549	-7.36\%	-7.36\%
Frequency	2016.1	$-0.087(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.002)$	$0.208(\mathrm{Cl}=+/-0.197 ; \mathrm{p}=0.040)$	$N A(C l=+/-N A ; p=N A)$	0.565	-8.35\%	-8.35\%
Frequency	2016.2	$-0.089(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.006)$	$0.205(\mathrm{Cl}=+/-0.215 ; \mathrm{p}=0.060)$	$N A(C l=+/-N A ; p=N A)$	0.545	-8.50\%	-8.50\%

AB Total

Coverage $=A B$ Total
End Trend Period $=2022$
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_scalar, phase_in_trend

Fit	Start Date	Time	Seasonality	Phase in Scalar	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	-0.025 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.012$)	$0.172(\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.011$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.348	-2.42\%	-2.42\%
Loss Cost	2011.2	$-0.026(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.013)$	$0.165(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.018)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.356	-2.60\%	-2.60\%
Loss Cost	2012.1	$-0.032(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.004)$	$0.187(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.008)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.432	-3.17\%	-3.17\%
Loss Cost	2012.2	$-0.037(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.002)$	$0.170(\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.015)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.474	-3.65\%	-3.65\%
Loss Cost	2013.1	$-0.044(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.001$)	$0.194(\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.006)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.545	-4.31\%	-4.31\%
Loss Cost	2013.2	$-0.048(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001$)	$0.181(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.011$)	$N A(C l=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.569	-4.71\%	-4.71\%
Loss Cost	2014.1	$-0.055(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$0.200(\mathrm{Cl}=+/-0.136 ; p=0.007)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.596	-5.31\%	-5.31\%
Loss Cost	2014.2	$-0.059(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001)$	$0.189(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.013)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.608	-5.69\%	-5.69\%
Loss Cost	2015.1	$-0.067(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.001)$	$0.212(\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.007)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.637	-6.45\%	-6.45\%
Loss Cost	2015.2	$-0.066(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.002)$	$0.213(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.012)$	$N A(C I=+/-N A ; p=N A)$	$N A(C I=+/-N A ; p=N A)$	0.620	-6.42\%	-6.42\%
Loss Cost	2016.1	$-0.067(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.005)$	$0.215(\mathrm{Cl}=+/-0.171 ; \mathrm{p}=0.019)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.546	-6.51\%	-6.51\%
Loss Cost	2016.2	$-0.056(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.023$)	$0.239(\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.012)$	$N A(C I=+/-N A ; p=N A)$	$N A(C I=+/-N A ; p=N A)$	0.546	-5.47\%	-5.47\%
Severity	2011.1	$0.008(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.084$)	$0.031(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.329)$	$N A(C I=+/-N A ; p=N A)$	$N A(C I=+/-N A ; p=N A)$	0.101	+0.82\%	+0.82\%
Severity	2011.2	$0.007(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.152)$	$0.028(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.402)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.041	+0.73\%	+0.73\%
Severity	2012.1	$0.006(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.307)$	$0.034(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.314)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.017	+0.55\%	+0.55\%
Severity	2012.2	$0.005(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.417)$	$0.032(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.372)$	$N A(C I=+/-N A ; p=N A)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.024	+0.48\%	+0.48\%
Severity	2013.1	$0.005(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.414)$	$0.030(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.427)$	$N A(C I=+/-N A ; p=N A)$	$N A(C I=+/-N A ; p=N A)$	-0.028	+0.53\%	+0.53\%
Severity	2013.2	$0.005(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.467)$	$0.030(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.455$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.050	+0.53\%	+0.53\%
Severity	2014.1	$0.004(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.604)$	$0.033(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.434)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.061	+0.42\%	+0.42\%
Severity	2014.2	$0.004(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.647)$	$0.033(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.463)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.082	+0.42\%	+0.42\%
Severity	2015.1	$0.007(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.480)$	$0.024(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.607)$	$N A(C I=+/-N A ; p=N A)$	$N A(C I=+/-N A ; p=N A)$	-0.079	+0.73\%	+0.73\%
Severity	2015.2	$0.010(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.387)$	$0.031(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.532)$	$N A(C I=+/-N A ; p=N A)$	$N A(C I=+/-N A ; p=N A)$	-0.059	+1.01\%	+1.01\%
Severity	2016.1	0.020 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.107)$	$0.007(\mathrm{Cl}=+/-0.100 ; \mathrm{p}=0.884)$	$N A(C I=+/-N A ; p=N A)$	$N A(C l e+/-N A ; p=N A)$	0.085	+2.00\%	+2.00\%
Severity	2016.2	$0.033(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.005)$	$0.035(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.342)$	$N A(C I=+/-N A ; p=N A)$	$N A(C I=+/-N A ; p=N A)$	0.489	+3.32\%	+3.32\%
Frequency	2011.1	$-0.033(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.003)$	$0.141(\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.049)$	$N A(C I=+/-N A ; p=N A)$	$N A(C I=+/-N A ; p=N A)$	0.357	-3.22\%	-3.22\%
Frequency	2011.2	$-0.034(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.005)$	$0.137(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.065$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.352	-3.31\%	-3.31\%
Frequency	2012.1	$-0.038(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.004)$	$0.153(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.047)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.374	-3.70\%	-3.70\%
Frequency	2012.2	$-0.042(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.003)$	$0.138(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.077)$	$N A(C I=+/-N A ; p=N A)$	$N A(C I=+/-N A ; p=N A)$	0.402	-4.11\%	-4.11\%
Frequency	2013.1	$-0.049(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.001)$	$0.164(\mathrm{Cl}=+/-0.153 ; p=0.037)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.472	-4.82\%	-4.82\%
Frequency	2013.2	$-0.054(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001)$	$0.151(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.062)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.490	-5.21\%	-5.21\%
Frequency	2014.1	$-0.059(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.001)$	$0.167(\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.049)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.491	-5.70\%	-5.70\%
Frequency	2014.2	$-0.063(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.002)$	$0.156(\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.077)$	$N A(C I=+/-N A ; p=N A)$	$N A(C I=+/-N A ; p=N A)$	0.497	-6.08\%	-6.08\%
Frequency	2015.1	$-0.074(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.001)$	$0.188(\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.038)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.561	-7.12\%	-7.12\%
Frequency	2015.2	$-0.076(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.002)$	$0.181(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.058)$	$N A(C I=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	0.549	-7.36\%	-7.36\%
Frequency	2016.1	$-0.087(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.002)$	$0.208(\mathrm{Cl}=+/-0.197 ; p=0.040)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.565	-8.35\%	-8.35\%
Frequency	2016.2	$-0.089(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.006)$	$0.205(\mathrm{Cl}=+/-0.215 ; \mathrm{p}=0.060$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.545	-8.50\%	-8.50\%

AB Total

Coverage $=A B$ Total
End Trend Period $=2022$
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_trend, mobility

Fit	Start Date	Time	Seasonality	Phase in Trend	Mobility	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	$0.001(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.812)$	0.116 ($\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.003$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.810	+0.14\%	+0.14\%
Loss Cost	2011.2	$0.001(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.933)$	$0.113(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.005)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.811	+0.06\%	+0.06\%
Loss Cost	2012.1	$-0.004(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.565$)	$0.128(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.002)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.836	-0.39\%	-0.39\%
Loss Cost	2012.2	$-0.008(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.224)$	$0.117(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.002)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.864	-0.83\%	-0.83\%
Loss Cost	2013.1	$-0.014(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.057)$	$0.133(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.001)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.889	-1.37\%	-1.37\%
Loss Cost	2013.2	$-0.017(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.024$)	$0.125(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.001)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.902	-1.72\%	-1.72\%
Loss Cost	2014.1	$-0.021(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.014)$	$0.135(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.001)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.907	-2.09\%	-2.09\%
Loss Cost	2014.2	$-0.024(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.009)$	$0.128(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.002)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.915	-2.41\%	-2.41\%
Loss Cost	2015.1	$-0.030(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.004)$	$0.142(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.001)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.923	-2.93\%	-2.93\%
Loss Cost	2015.2	$-0.029(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.012)$	$0.144(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.002)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.920	-2.82\%	-2.82\%
Loss Cost	2016.1	$-0.023(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.053)$	$0.132(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.004)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.913	-2.31\%	-2.31\%
Loss Cost	2016.2	$-0.013(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.079)$	$0.156(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.971	-1.25\%	-1.25\%
Severity	2011.1	$0.004(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.504)$	$0.041(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.210)$	$N A(C l=+/-N A ; p=N A)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.196)$	0.133	+0.38\%	+0.38\%
Severity	2011.2	$0.002(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.686)$	$0.037(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.268)$	$\mathrm{NA}(\mathrm{Cl}=+/$ - $\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.185)$	0.082	+0.24\%	+0.24\%
Severity	2012.1	$-0.001(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.916)$	$0.047(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.169)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.127)$	0.091	-0.07\%	-0.07\%
Severity	2012.2	$-0.002(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.789)$	$0.044(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.215)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.127)$	0.058	-0.19\%	-0.19\%
Severity	2013.1	$-0.002(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.795$)	$0.045(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.240)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.143)$	0.049	-0.21\%	-0.21\%
Severity	2013.2	$-0.002(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.776$)	$0.044(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.274)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.155$)	0.026	-0.25\%	-0.25\%
Severity	2014.1	$-0.005(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.598)$	$0.051(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.230)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.138)$	0.034	-0.52\%	-0.52\%
Severity	2014.2	$-0.006(\mathrm{Cl}=+/-0.023 ; p=0.607)$	$0.050(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.265)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.152)$	0.011	-0.56\%	-0.56\%
Severity	2015.1	$-0.003(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.810)$	$0.044(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.369)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.202)$	-0.015	-0.30\%	-0.30\%
Severity	2015.2	$0.000(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.985)$	$0.050(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.334)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.224)$	-0.004	-0.03\%	-0.03\%
Severity	2016.1	$0.011(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.456)$	$0.024(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.635)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.002(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.322)$	0.092	+1.10\%	+1.10\%
Severity	2016.2	$0.024(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.051)$	$0.052(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.166)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.159)$	0.550	+2.39\%	+2.39\%
Frequency	2011.1	-0.002 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.652$)	0.075 ($\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.017$)	$\mathrm{NA}(\mathrm{Cl}=+/$-NA; $\mathrm{p}=\mathrm{NA})$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.888	-0.23\%	-0.23\%
Frequency	2011.2	$-0.002(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.735)$	$0.077(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.019)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.887	-0.19\%	-0.19\%
Frequency	2012.1	$-0.003(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.597)$	$0.081(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.019)$	$\mathrm{NA}(\mathrm{Cl}=+/$ - $\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.887	-0.33\%	-0.33\%
Frequency	2012.2	$-0.006(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.311$)	$0.073(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.031)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.900	-0.65\%	-0.65\%
Frequency	2013.1	$-0.012(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.080)$	$0.089(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.008)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.920	-1.16\%	-1.16\%
Frequency	2013.2	$-0.015(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.036)$	$0.081(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.014)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.928	-1.47\%	-1.47\%
Frequency	2014.1	$-0.016(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.048)$	$0.084(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.018)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.925	-1.58\%	-1.58\%
Frequency	2014.2	$-0.019(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.032)$	$0.078(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.030)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.929	-1.86\%	-1.86\%
Frequency	2015.1	$-0.027(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.004$)	$0.098(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.005)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.950	-2.64\%	-2.64\%
Frequency	2015.2	$-0.028(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.006$)	$0.094(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.010)$	$\mathrm{NA}(\mathrm{Cl}=+/$-NA; $\mathrm{p}=\mathrm{NA})$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.950	-2.79\%	-2.79\%
Frequency	2016.1	$-0.034(\mathrm{Cl}=+/-0.020 ; p=0.003)$	$0.108(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.005)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.955	-3.37\%	-3.37\%
Frequency	2016.2	$-0.036(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.005$)	$0.104(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.011)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; p=\mathrm{NA})$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.954	-3.56\%	-3.56\%

AB Total

Coverage $=A B$ Total
End Trend Period = 2019.2
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_trend

Fit	Start Date	Time	Seasonality	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	$0.006(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.469)$	0.104 ($\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.025$)	NA (Cl = +/-NA; $\mathrm{p}=\mathrm{NA}$)	0.233	+0.60\%	+0.60\%
Loss Cost	2011.2	$0.005(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.586)$	$0.101(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.038)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.181	+0.50\%	+0.50\%
Loss Cost	2012.1	$0.000(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.983)$	$0.116(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.022)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.241	-0.02\%	-0.02\%
Loss Cost	2012.2	$-0.007(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.473)$	$0.098(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.040)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.215	-0.73\%	-0.73\%
Loss Cost	2013.1	$-0.015(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.185)$	$0.117(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.018)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.347	-1.46\%	-1.46\%
Loss Cost	2013.2	$-0.022(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.067)$	$0.101(\mathrm{Cl}=+/-0.090 ; p=0.033)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.410	-2.19\%	-2.19\%
Loss Cost	2014.1	$-0.029(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.042)$	$0.115(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.023)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.462	-2.83\%	-2.83\%
Loss Cost	2014.2	$-0.039(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.014)$	$0.096(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.040)$	$N A(C l=+/-N A ; p=N A)$	0.580	-3.80\%	-3.80\%
Loss Cost	2015.1	$-0.052(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.004)$	0.120 ($\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.011$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.719	-5.05\%	-5.05\%
Loss Cost	2015.2	$-0.057(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.008)$	$0.112(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.026)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.731	-5.56\%	-5.56\%
Loss Cost	2016.1	$-0.052(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.044)$	$0.104(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.065$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.548	-5.04\%	-5.04\%
Loss Cost	2016.2	$-0.027(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.094)$	$0.133(\mathrm{Cl}=+/-0.069 ; p=0.006)$	$N A(C l e+/-N A ; p=N A)$	0.840	-2.65\%	-2.65\%
Severity	2011.1	$-0.003(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.657)$	$0.027(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.455)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	-0.081	-0.31\%	-0.31\%
Severity	2011.2	$-0.006(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.390)$	$0.017(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.632)$	NA (Cl $=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.065	-0.64\%	-0.64\%
Severity	2012.1	$-0.012(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.139)$	$0.033(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.362)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.067	-1.17\%	-1.17\%
Severity	2012.2	$-0.016(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.067)$	$0.022(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.538)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.149	-1.59\%	-1.59\%
Severity	2013.1	$-0.018(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.071)$	$0.028(\mathrm{Cl}=+/-0.081 ; p=0.469)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.148	-1.82\%	-1.82\%
Severity	2013.2	$-0.023(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.046)$	$0.018(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.653)$	$N A(C l=+/-N A ; p=N A)$	0.220	-2.28\%	-2.28\%
Severity	2014.1	$-0.031(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.017$)	$0.036(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.357)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.387	-3.09\%	-3.09\%
Severity	2014.2	$-0.039(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.008)$	$0.021(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.571)$	$N A(C l=+/-N A ; p=N A)$	0.518	-3.87\%	-3.87\%
Severity	2015.1	$-0.042(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.018)$	$0.027(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.526)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.451	-4.16\%	-4.16\%
Severity	2015.2	$-0.048(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.027)$	$0.018(\mathrm{Cl}=+/-0.106 ; p=0.696)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.454	-4.73\%	-4.73\%
Severity	2016.1	$-0.035(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.135)$	$-0.002(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.966)$	NA (Cl $=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.163	-3.47\%	-3.47\%
Severity	2016.2	$-0.010(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.485$)	$0.028(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.349)$	$N A(C l e+/-N A ; p=N A)$	-0.050	-0.98\%	-0.98\%
Frequency	2011.1	$0.009(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.033)$	$0.077(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.002)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.544	+0.91\%	+0.91\%
Frequency	2011.2	$0.011(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.013)$	$0.084(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.001)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.604	+1.15\%	+1.15\%
Frequency	2012.1	$0.012(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.025)$	$0.083(\mathrm{Cl}=+/-0.046 ; p=0.002)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.600	+1.16\%	+1.16\%
Frequency	2012.2	$0.009(\mathrm{Cl}=+/-0.010 ; p=0.095)$	$0.076(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.003)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.512	+0.88\%	+0.88\%
Frequency	2013.1	$0.004(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.430)$	$0.089(\mathrm{Cl}=+/-0.040 ; p=0.000)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.654	+0.37\%	+0.37\%
Frequency	2013.2	$0.001(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.860)$	$0.083(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.001)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.618	+0.09\%	+0.09\%
Frequency	2014.1	$0.003(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.645)$	$0.079(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.003)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.590	+0.27\%	+0.27\%
Frequency	2014.2	$0.001(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.915$)	$0.075(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.007)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.529	+0.07\%	+0.07\%
Frequency	2015.1	$-0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.044)$	$0.094(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.890	-0.93\%	-0.93\%
Frequency	2015.2	$-0.009(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.113)$	0.095 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.884	-0.87\%	-0.87\%
Frequency	2016.1	$-0.016(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.001)$	$0.106(\mathrm{Cl}=+/-0.013 ; p=0.000)$	$N A(C l=+/-N A ; p=N A)$	0.985	-1.63\%	-1.63\%
Frequency	2016.2	$-0.017(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.004$)	$0.106(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.984	-1.68\%	-1.68\%

AB Total

Coverage $=A B$ Total
End Trend Period $=2022$.
Excluded Points = NA
Parameters Included: time, scalar_ level_ change, seasonality, phase_ in_trend, mobility
Scalar Level Change Start Date $=2022-07-01$

Fit	Start Date	Time	Seasonality	Phase in Trend	Mobility	Scalar Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.005 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.478)$	$0.120(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.002)$	$N A(C l=+/-N A ; p=N A)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.103(\mathrm{Cl}=+/-0.203 ; \mathrm{p}=0.301)$	0.812	+0.50\%	+0.50\%
Loss Cost	2011.2	$0.004(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.577)$	$0.119(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.004)$	$N A(C l=+/-N A ; p=N A)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.099(\mathrm{Cl}=+/-0.212 ; \mathrm{p}=0.341)$	0.810	+0.43\%	+0.43\%
Loss Cost	2012.1	$-0.001(\mathrm{Cl}=+/-0.017 ; p=0.931)$	$0.132(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.002)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.079(\mathrm{Cl}=+/-0.207 ; p=0.431)$	0.832	-0.07\%	-0.07\%
Loss Cost	2012.2	-0.006 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.449$)	$0.119(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.003)$	$\mathrm{NA}(\mathrm{Cl}=+/ \mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.046(\mathrm{Cl}=+/-0.199 ; \mathrm{p}=0.631)$	0.858	-0.62\%	-0.62\%
Loss Cost	2013.1	$-0.013(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.146)$	$0.134(\mathrm{Cl}=+/-0.070 ; p=0.001)$	$N A(C l=+/-N A ; p=N A)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.022(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.807)$	0.882	-1.26\%	-1.26\%
Loss Cost	2013.2	-0.018 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.062$)	$0.124(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.002)$	$N A(C l=+/-N A ; p=N A)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.005(\mathrm{Cl}=+/-0.187 ; \mathrm{p}=0.955$)	0.896	-1.74\%	-1.74\%
Loss Cost	2014.1	-0.023 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.034$)	$0.135(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.001)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.010 ($\mathrm{Cl}=+1-0.004 ; \mathrm{p}=0.000$)	0.022 ($\mathrm{Cl}=+/-0.189 ; \mathrm{p}=0.802)$	0.901	-2.23\%	-2.23\%
Loss Cost	2014.2	$-0.028(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.019)$	$0.125(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.003)$	$N A(C l=+/-N A ; p=N A)$	$0.009(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.048 ($\mathrm{Cl}=+/-0.192 ; \mathrm{p}=0.593$)	0.910	-2.74\%	-2.74\%
Loss Cost	2015.1	$-0.036(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.008)$	$0.139(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.001)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$0.009(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.073(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.407)$	0.921	-3.50\%	-3.50\%
Loss Cost	2015.2	$-0.035(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.021)$	$0.141(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.003)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$0.009(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.070 ($\mathrm{Cl}=+/-0.206 ; \mathrm{p}=0.465$)	0.916	-3.43\%	-3.43\%
Loss Cost	2016.1	$-0.029(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.083)$	$0.131(\mathrm{Cl}=+/-0.085 ; p=0.007)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$0.009(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001)$	$0.052(\mathrm{Cl}=+/-0.216 ; \mathrm{p}=0.598)$	0.906	-2.82\%	-2.82\%
Loss Cost	2016.2	$-0.011(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.283)$	$0.157(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/$ - $\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.017(\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.777)$	0.968	-1.06\%	-1.06\%
Severity	2011.1	$-0.003(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.620)$	$0.033(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.266)$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.034)$	$0.195(\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.025)$	0.304	-0.28\%	-0.28\%
Severity	2011.2	-0.006 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.364$)	0.026 ($\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.380$)	$\mathrm{NA}(\mathrm{Cl}=+/ \mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.023)$	0.213 ($\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.016$)	0.303	-0.56\%	-0.56\%
Severity	2012.1	$-0.010(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.114)$	$0.038(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.187)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$-0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.008)$	$0.231(\mathrm{Cl}=+/-0.160 ; \mathrm{p}=0.007)$	0.378	-1.02\%	-1.02\%
Severity	2012.2	$-0.013(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.057)$	$0.031(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.282)$	$N A(C l=+/-N A ; p=N A)$	$-0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.005$)	$0.250(\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.005$)	0.403	-1.33\%	-1.33\%
Severity	2013.1	$-0.015(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.058)$	$0.035(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.252)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$-0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.006)$	0.256 ($\mathrm{Cl}=+/-0.167 ; \mathrm{p}=0.005$)	0.407	-1.50\%	-1.50\%
Severity	2013.2	$-0.018(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.042)$	$0.029(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.351)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.006)$	$0.272(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.005)$	0.423	-1.78\%	-1.78\%
Severity	2014.1	$-0.024(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.016$)	$0.041(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.191)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$-0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.003)$	$0.292(\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.003)$	0.497	-2.35\%	-2.35\%
Severity	2014.2	-0.028 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.011$)	$0.034(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.289)$	$\mathrm{NA}(\mathrm{Cl}=+/ \mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.006(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.002)$	0.313 ($\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.002)$	0.528	-2.75\%	-2.75\%
Severity	2015.1	$-0.028(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.027)$	$0.034(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.325)$	$\mathrm{NA}(\mathrm{Cl}=+/$-NA; p $=\mathrm{NA}$)	$-0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.004)$	$0.313(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.004)$	0.503	-2.77\%	-2.77\%
Severity	2015.2	$-0.029(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.048)$	$0.033(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.374)$	$N A(C l=+/-N A ; p=N A)$	$-0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.007)$	$0.316(\mathrm{Cl}=+/-0.206 ; \mathrm{p}=0.007)$	0.490	-2.82\%	-2.82\%
Severity	2016.1	-0.018 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.213$)	0.016 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.648$)	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; p $=\mathrm{NA}$)	$-0.005(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.014)$	$0.285(\mathrm{Cl}=+/-0.198 ; \mathrm{p}=0.010$)	0.537	-1.79\%	-1.79\%
Severity	2016.2	$-0.002(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.859)$	0.040 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.082$)	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$-0.004(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.002)$	$0.222(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.003)$	0.847	-0.16\%	-0.16\%
Frequency	2011.1	0.008 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.036$)	$0.088(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$N A(C 1=+/-N A ; p=N A)$	0.016 (Cl $=+/-0.002 ; ~ p=0.000)$	$-0.298(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.000)$	0.960	+0.78\%	+0.78\%
Frequency	2011.2	$0.010(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.013$)	$0.093(\mathrm{Cl}=+/-0.036 ; p=0.000)$	$N A(C I=+/-N A ; p=N A)$	$0.016(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.311(\mathrm{Cl}=+/-0.100 ; p=0.000)$	0.964	+0.99\%	+0.99\%
Frequency	2012.1	$0.010(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.029)$	$0.094(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.016 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.310(\mathrm{Cl}=+/-0.105 ; p=0.000)$	0.964	+0.96\%	+0.96\%
Frequency	2012.2	$0.007(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.107)$	$0.089(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.016 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.296(\mathrm{Cl}=+/-0.103 ; p=0.000)$	0.968	+0.72\%	+0.72\%
Frequency	2013.1	$0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.531)$	$0.100(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	$N A(C l=+/-N A ; p=N A)$	0.015 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.278(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.000)$	0.979	+0.24\%	+0.24\%
Frequency	2013.2	$0.000(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.929$)	0.095 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.015 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.267(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.000)$	0.981	+0.04\%	+0.04\%
Frequency	2014.1	$0.001(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.803)$	$0.094(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/ \mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.015(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.270(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.000)$	0.980	+0.12\%	+0.12\%
Frequency	2014.2	$0.000(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.989)$	$0.092(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000)$	$N A(C I=+/-N A ; p=N A)$	$0.015(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.264(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.000)$	0.980	+0.01\%	+0.01\%
Frequency	2015.1	$-0.008(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.067)$	0.106 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000$)	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; p $=\mathrm{NA}$)	0.014 ($\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.000$)	$-0.240(\mathrm{Cl}=+/-0.063 ; p=0.000)$	0.993	-0.75\%	-0.75\%
Frequency	2015.2	$-0.006(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.166$)	$0.107(\mathrm{Cl}=+/-0.026 ; p=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.014 ($\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.000$)	$-0.246(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.000)$	0.993	-0.62\%	-0.62\%
Frequency	2016.1	$-0.011(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.028)$	$0.114(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$N A(C l=+/-N A ; p=N A)$	$0.014(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.000)$	$-0.233(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.000)$	0.995	-1.05\%	-1.05\%
Frequency	2016.2	$-0.009(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.083)$	$0.116(\mathrm{Cl}=+/-0.025 ; p=0.000)$	$N A(C l=+/-N A ; p=N A)$	$0.014(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.000)$	$-0.239(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.000)$	0.995	-0.91\%	-0.91\%

AB Total

Coverage $=A B$ Total
End Trend Period $=2022$
Excluded Points $=$ NA
Excluded Points = NA
Parameters Included: time, seasonality, phase_in scolar, phase in trend, mobility

Fit	Start Date	Time	Seasonality	Phase in Scalar	Phase in Trend	Mobility	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	$0.001(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.812)$	$0.116(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.003)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{P}=\mathrm{NA})$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.810	+0.14\%	+0.14\%
Loss Cost	2011.2	$0.001(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.933)$	$0.113(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.005)$	$N A(C 1=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.811	+0.06\%	+0.06\%
Loss Cost	2012.1	$-0.004(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.565)$	0.128 ($\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.002)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.836	-0.39\%	-0.39\%
Loss Cost	2012.2	$-0.008(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.224)$	0.117 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.002)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$-NA; p $=\mathrm{NA}$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.864	-0.83\%	-0.83\%
Loss Cost	2013.1	$-0.014(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.057)$	$0.133(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.001)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.889	-1.37\%	-1.37\%
Loss Cost	2013.2	$-0.017(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.024)$	$0.125(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.001)$	$N A(C 1=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.902	-1.72\%	-1.72\%
Loss Cost	2014.1	$-0.021(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.014)$	0.135 ($\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.001$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.907	-2.09\%	-2.09\%
Loss Cost	2014.2	$-0.024(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.009)$	$0.128(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.002)$	$N A(C I=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.915	-2.41\%	-2.41\%
Loss Cost	2015.1	$-0.030(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.004)$	0.142 ($\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.001$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.923	-2.93\%	-2.93\%
Loss Cost	2015.2	$-0.029(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.012)$	0.144 ($\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.002$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.920	-2.82\%	-2.82\%
Loss Cost	2016.1	-0.023 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.053)$	$0.132(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.004)$	$N A(C 1=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.913	-2.31\%	-2.31\%
Loss Cost	2016.2	$-0.013(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.079)$	$0.156(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$-NA; p $=\mathrm{NA}$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.971	-1.25\%	-1.25\%
Severity	2011.1	$0.004(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.504)$	0.041 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.210$)	$N A(C 1=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.196)$	0.133	+0.38\%	+0.38\%
Severity	2011.2	$0.002(\mathrm{Cl}=+/-0.012 ; p=0.686)$	$0.037(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.268)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.185)$	0.082	+0.24\%	+0.24\%
Severity	2012.1	$-0.001(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.916)$	0.047 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.169$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.127)$	0.091	-0.07\%	-0.07\%
Severity	2012.2	$-0.002(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.789)$	$0.044(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.215)$	$N A(C 1=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.127)$	0.058	-0.19\%	-0.19\%
Severity	2013.1	$-0.002(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.795$)	0.045 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.240$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.143)$	0.049	-0.21\%	-0.21\%
Severity	2013.2	$-0.002(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.776)$	$0.044(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.274$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.155)$	0.026	-0.25\%	-0.25\%
Severity	2014.1	$-0.005(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.598)$	$0.051(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.230)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.138)$	0.034	-0.52\%	-0.52\%
Severity	2014.2	$-0.006(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.607)$	$0.050(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.265$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.152)$	0.011	-0.56\%	-0.56\%
Severity	2015.1	$-0.003(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.810)$	$0.044(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.369)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$-NA; p $=\mathrm{NA}$)	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.202)$	-0.015	-0.30\%	-0.30\%
Severity	2015.2	$0.000(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.985)$	$0.050(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.334)$	$N A(C I=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.224)$	-0.004	-0.03\%	-0.03\%
Severity	2016.1	$0.011(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.456)$	$0.024(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.635)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	$-0.002(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.322)$	0.092	+1.10\%	+1.10\%
Severity	2016.2	$0.024(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.051)$	$0.052(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.166)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$-0.002(\mathrm{Cl}=+1-0.003 ; \mathrm{p}=0.159)$	0.550	+2.39\%	+2.39\%
Frequency	2011.1	$-0.002(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.652$)	0.075 ($\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.017$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; p $=\mathrm{NA}$)	0.014 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.888	-0.23\%	-0.23\%
Frequency	2011.2	$-0.002(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.735)$	$0.077(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.019)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.887	-0.19\%	-0.19\%
Frequency	2012.1	$-0.003(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.597)$	$0.081(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.019)$	$N A(C 1=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.887	-0.33\%	-0.33\%
Frequency	2012.2	$-0.006(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.311$)	0.073 ($\mathrm{Cl}=+/-0.065 ; ~ p=0.031$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.900	-0.65\%	-0.65\%
Frequency	2013.1	$-0.012(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.080)$	$0.089(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.008)$	$N \mathrm{~N}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.920	-1.16\%	-1.16\%
Frequency	2013.2	$-0.015(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.036)$	$0.081(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.014)$	$N A(C 1=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.928	-1.47\%	-1.47\%
Frequency	2014.1	$-0.016(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.048)$	$0.084(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.018)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/$ NA; $\mathrm{p}=\mathrm{NA})$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.925	-1.58\%	-1.58\%
Frequency	2014.2	$-0.019(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.032)$	$0.078(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.030)$	$N A(C 1=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.929	-1.86\%	-1.86\%
Frequency	2015.1	$-0.027(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.004)$	$0.098(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.005)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.950	-2.64\%	-2.64\%
Frequency	2015.2	$-0.028(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.006)$	$0.094(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.010$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.950	-2.79\%	-2.79\%
Frequency	2016.1	$-0.034(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.003)$	$0.108(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.005)$	$N A(C 1=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.955	-3.37\%	-3.37\%
Frequency	2016.2	$-0.036(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.005$)	$0.104(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.011$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$N A(C l=+/-N A ; p=N A)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.954	-3.56\%	-3.56\%

AB Total

Coverage $=A B$ Total
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_scalar, phase_in_trend

Fit	Start Date	Time	Seasonality	Phase in Scalar	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.006 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.469$)	0.104 ($\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.025$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.233	+0.60\%	+0.60\%
Loss Cost	2011.2	0.005 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.586$)	$0.101(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.038)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.181	+0.50\%	+0.50\%
Loss Cost	2012.1	$0.000(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.983)$	$0.116(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.022)$	$N \mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.241	-0.02\%	-0.02\%
Loss Cost	2012.2	$-0.007(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.473)$	$0.098(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.040)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.215	-0.73\%	-0.73\%
Loss Cost	2013.1	$-0.015(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.185)$	$0.117(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.018)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.347	-1.46\%	-1.46\%
Loss Cost	2013.2	$-0.022(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.067)$	$0.101(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.033)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.410	-2.19\%	-2.19\%
Loss Cost	2014.1	$-0.029(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.042)$	$0.115(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.023)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.462	-2.83\%	-2.83\%
Loss Cost	2014.2	$-0.039(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.014)$	$0.096(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.040)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.580	-3.80\%	-3.80\%
Loss Cost	2015.1	$-0.052(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.004)$	$0.120(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.011)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.719	-5.05\%	-5.05\%
Loss Cost	2015.2	$-0.057(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.008)$	$0.112(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.026)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.731	-5.56\%	-5.56\%
Loss Cost	2016.1	$-0.052(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.044)$	$0.104(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.065$)	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.548	-5.04\%	-5.04\%
Loss Cost	2016.2	$-0.027(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.094)$	$0.133(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.006)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.840	-2.65\%	-2.65\%
Severity	2011.1	$-0.003(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.657)$	$0.027(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.455)$	$N A(C I=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	-0.081	-0.31\%	-0.31\%
Severity	2011.2	$-0.006(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.390)$	$0.017(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.632)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.065	-0.64\%	-0.64\%
Severity	2012.1	$-0.012(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.139)$	$0.033(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.362)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.067	-1.17\%	-1.17\%
Severity	2012.2	$-0.016(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.067)$	$0.022(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.538)$	$N A(C I=+/-N A ; p=N A)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.149	-1.59\%	-1.59\%
Severity	2013.1	$-0.018(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.071)$	$0.028(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.469)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.148	-1.82\%	-1.82\%
Severity	2013.2	$-0.023(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.046)$	$0.018(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.653)$	$N A(C I=+/-N A ; p=N A)$	$N A(C I=+/-N A ; p=N A)$	0.220	-2.28\%	-2.28\%
Severity	2014.1	$-0.031(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.017)$	$0.036(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.357)$	$N A(C I=+/-N A ; p=N A)$	$N A(C l=+/-N A ; p=N A)$	0.387	-3.09\%	-3.09\%
Severity	2014.2	$-0.039(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.008)$	$0.021(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.571)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.518	-3.87\%	-3.87\%
Severity	2015.1	$-0.042(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.018)$	$0.027(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.526)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.451	-4.16\%	-4.16\%
Severity	2015.2	$-0.048(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.027)$	$0.018(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.696)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.454	-4.73\%	-4.73\%
Severity	2016.1	$-0.035(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.135)$	$-0.002(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.966$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.163	-3.47\%	-3.47\%
Severity	2016.2	$-0.010(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.485)$	0.028 ($\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.349)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.050	-0.98\%	-0.98\%
Frequency	2011.1	$0.009(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.033)$	$0.077(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.002)$	$N A(C I=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.544	+0.91\%	+0.91\%
Frequency	2011.2	$0.011(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.013)$	$0.084(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.001)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.604	+1.15\%	+1.15\%
Frequency	2012.1	$0.012(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.025)$	$0.083(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.002)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.600	+1.16\%	+1.16\%
Frequency	2012.2	$0.009(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.095$)	$0.076(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.003)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.512	+0.88\%	+0.88\%
Frequency	2013.1	$0.004(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.430)$	$0.089(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.654	+0.37\%	+0.37\%
Frequency	2013.2	$0.001(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.860)$	$0.083(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.001$)	$N A(C l=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.618	+0.09\%	+0.09\%
Frequency	2014.1	$0.003(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.645)$	$0.079(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.003)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.590	+0.27\%	+0.27\%
Frequency	2014.2	$0.001(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.915$)	0.075 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.007$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.529	+0.07\%	+0.07\%
Frequency	2015.1	$-0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.044)$	$0.094(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$N A(C l=+/-N A ; p=N A)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.890	-0.93\%	-0.93\%
Frequency	2015.2	$-0.009(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.113)$	$0.095(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000)$	$N A(C I=+/-N A ; p=N A)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.884	-0.87\%	-0.87\%
Frequency	2016.1	$-0.016(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.001)$	$0.106(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.985	-1.63\%	-1.63\%
Frequency	2016.2	$-0.017(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.004)$	$0.106(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.984	-1.68\%	-1.68\%

AB Total

Coverage $=A B$ Total
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time

Fit			Implied Trend Adjusted R^2 Rate	
	Start Date	Time		
Loss Cost	2011.1	-0.023 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.036)$	0.148	-2.25\%
Loss Cost	2011.2	-0.026 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.024$)	0.182	-2.60\%
Loss Cost	2012.1	-0.030 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.019)$	0.209	-2.95\%
Loss Cost	2012.2	$-0.037(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.006)$	0.300	-3.65\%
Loss Cost	2013.1	$-0.041(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.005)$	0.320	-4.03\%
Loss Cost	2013.2	-0.048 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.003$)	0.387	-4.71\%
Loss Cost	2014.1	$-0.051(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.004)$	0.372	-4.95\%
Loss Cost	2014.2	$-0.059(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.003)$	0.423	-5.69\%
Loss Cost	2015.1	$-0.062(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.005)$	0.402	-5.98\%
Loss Cost	2015.2	$-0.066(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.007)$	0.393	-6.42\%
Loss Cost	2016.1	$-0.061(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.026)$	0.296	-5.89\%
Loss Cost	2016.2	$-0.056(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.067)$	0.206	-5.47\%
Severity	2011.1	$0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.072)$	0.101	+0.86\%
Severity	2011.2	$0.007(\mathrm{Cl}=+/-0.010 ; p=0.149)$	0.054	+0.73\%
Severity	2012.1	$0.006(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.271)$	0.013	+0.60\%
Severity	2012.2	$0.005(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.415)$	-0.015	+0.48\%
Severity	2013.1	0.006 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.370)$	-0.008	+0.58\%
Severity	2013.2	$0.005(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.461)$	-0.025	+0.53\%
Severity	2014.1	0.005 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.546$)	-0.038	+0.48\%
Severity	2014.2	$0.004(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.642)$	-0.051	+0.42\%
Severity	2015.1	0.008 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.432)$	-0.024	+0.78\%
Severity	2015.2	0.010 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.375)$	-0.011	+1.01\%
Severity	2016.1	0.020 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.087)$	0.160	+2.02\%
Severity	2016.2	$0.033(\mathrm{Cl}=+/-0.020 ; p=0.005)$	0.489	+3.32\%
Frequency	2011.1	$-0.031(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.007)$	0.258	-3.08\%
Frequency	2011.2	$-0.034(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.007)$	0.265	-3.31\%
Frequency	2012.1	$-0.036(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.008)$	0.264	-3.52\%
Frequency	2012.2	$-0.042(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.004)$	0.323	-4.11\%
Frequency	2013.1	-0.047 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.003)$	0.352	-4.58\%
Frequency	2013.2	$-0.054(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.002)$	0.399	-5.21\%
Frequency	2014.1	$-0.056(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.004)$	0.376	-5.41\%
Frequency	2014.2	$-0.063(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.003)$	0.408	-6.08\%
Frequency	2015.1	$-0.069(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.004)$	0.424	-6.71\%
Frequency	2015.2	-0.076 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.005$)	0.431	-7.36\%
Frequency	2016.1	$-0.081(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.009)$	0.405	-7.76\%
Frequency	2016.2	$-0.089(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.012)$	0.401	-8.50\%

AB Total

Coverage $=A B$ Total
End Trend Period $=2022.2$
Excluded Points $=$ NA
Parameters Included: time, seasonality, mobility

Fit	Start Date	Time	Seasonality	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2011.1	$0.001(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.812)$	0.116 ($\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.003$)	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.810	+0.14\%
Loss Cost	2011.2	$0.001(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.933)$	$0.113(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.005)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.811	+0.06\%
Loss Cost	2012.1	$-0.004(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.565)$	$0.128(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.002)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.836	-0.39\%
Loss Cost	2012.2	$-0.008(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.224)$	$0.117(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.002)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.864	-0.83\%
Loss Cost	2013.1	$-0.014(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.057)$	$0.133(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.001)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.889	-1.37\%
Loss Cost	2013.2	$-0.017(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.024)$	0.125 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.001)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.902	-1.72\%
Loss Cost	2014.1	-0.021 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.014)$	$0.135(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.001)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.907	-2.09\%
Loss Cost	2014.2	-0.024 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.009)$	$0.128(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.002)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.915	-2.41\%
Loss Cost	2015.1	-0.030 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.004)$	$0.142(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.001)$	0.009 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.923	-2.93\%
Loss Cost	2015.2	-0.029 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.012)$	$0.144(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.002)$	0.009 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.920	-2.82\%
Loss Cost	2016.1	$-0.023(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.053)$	$0.132(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.004)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.913	-2.31\%
Loss Cost	2016.2	$-0.013(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.079)$	$0.156(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.971	-1.25\%
Severity	2011.1	$0.004(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.504)$	$0.041(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.210)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.196)$	0.133	+0.38\%
Severity	2011.2	$0.002(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.686)$	$0.037(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.268)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.185)$	0.082	+0.24\%
Severity	2012.1	-0.001 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.916$)	$0.047(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.169)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.127)$	0.091	-0.07\%
Severity	2012.2	$-0.002(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.789)$	$0.044(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.215)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.127)$	0.058	-0.19\%
Severity	2013.1	-0.002 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.795$)	0.045 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.240)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.143)$	0.049	-0.21\%
Severity	2013.2	-0.002 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.776$)	$0.044(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.274)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.155)$	0.026	-0.25\%
Severity	2014.1	-0.005 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.598)$	$0.051(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.230)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.138)$	0.034	-0.52\%
Severity	2014.2	-0.006 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.607)$	$0.050(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.265)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.152)$	0.011	-0.56\%
Severity	2015.1	-0.003 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.810$)	$0.044(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.369)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.202)$	-0.015	-0.30\%
Severity	2015.2	$0.000(\mathrm{Cl}=+/-0.030 ; p=0.985)$	$0.050(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.334)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.224)$	-0.004	-0.03\%
Severity	2016.1	$0.011(\mathrm{Cl}=+/-0.031 ; p=0.456)$	$0.024(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.635)$	$-0.002(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.322)$	0.092	+1.10\%
Severity	2016.2	$0.024(\mathrm{Cl}=+/-0.024 ; p=0.051)$	$0.052(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.166)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.159)$	0.550	+2.39\%
Frequency	2011.1	$-0.002(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.652)$	0.075 ($\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.017)$	0.014 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.888	-0.23\%
Frequency	2011.2	$-0.002(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.735)$	$0.077(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.019)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.887	-0.19\%
Frequency	2012.1	-0.003 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.597)$	$0.081(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.019)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.887	-0.33\%
Frequency	2012.2	-0.006 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.311)$	$0.073(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.031)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.900	-0.65\%
Frequency	2013.1	-0.012 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.080)$	$0.089(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.008)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.920	-1.16\%
Frequency	2013.2	$-0.015(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.036)$	$0.081(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.014)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.928	-1.47\%
Frequency	2014.1	-0.016 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.048)$	$0.084(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.018)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.925	-1.58\%
Frequency	2014.2	-0.019 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.032)$	$0.078(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.030)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.929	-1.86\%
Frequency	2015.1	$-0.027(\mathrm{Cl}=+/-0.016 ; p=0.004)$	$0.098(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.005)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.950	-2.64\%
Frequency	2015.2	-0.028 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.006$)	$0.094(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.010)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.950	-2.79\%
Frequency	2016.1	-0.034 ($\mathrm{Cl}=+/-0.020 ; p=0.003)$	$0.108(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.005)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.955	-3.37\%
Frequency	2016.2	$-0.036(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.005)$	$0.104(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.011)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.954	-3.56\%

AB Total

Coverage $=A B$ Total
End Trend Period = 2022.2
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_scalar, mobility

Fit	Start Date	Time	Seasonality	Phase in Scalar	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2011.1	$0.001(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.812)$	0.116 ($\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.003$)	$N A(C l=+/-N A ; p=N A)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.810	+0.14\%
Loss Cost	2011.2	$0.001(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.933)$	$0.113(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.005)$	$N A(C l=+/-N A ; p=N A)$	$0.012(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.811	+0.06\%
Loss Cost	2012.1	$-0.004(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.565)$	$0.128(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.002)$	$N A(C l=+/-N A ; p=N A)$	$0.011(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.836	-0.39\%
Loss Cost	2012.2	$-0.008(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.224)$	$0.117(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.002)$	$N A(C l=+/-N A ; p=N A)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.864	-0.83\%
Loss Cost	2013.1	$-0.014(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.057)$	$0.133(\mathrm{Cl}=+/-0.067 ; p=0.001)$	$N A(C l=+/-N A ; p=N A)$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.889	-1.37\%
Loss Cost	2013.2	$-0.017(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.024)$	$0.125(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.001)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.902	-1.72\%
Loss Cost	2014.1	$-0.021(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.014)$	$0.135(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.001)$	$N A(C l=+/-N A ; p=N A)$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.907	-2.09\%
Loss Cost	2014.2	$-0.024(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.009$)	$0.128(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.002)$	$N A(C l=+/-N A ; p=N A)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.915	-2.41\%
Loss Cost	2015.1	$-0.030(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.004)$	$0.142(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.001)$	$N A(C l=+/-N A ; p=N A)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.923	-2.93\%
Loss Cost	2015.2	$-0.029(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.012)$	$0.144(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.002)$	$N A(C l=+/-N A ; p=N A)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.920	-2.82\%
Loss Cost	2016.1	$-0.023(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.053)$	$0.132(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.004)$	$N A(C l=+/-N A ; p=N A)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.913	-2.31\%
Loss Cost	2016.2	$-0.013(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.079$)	$0.156(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	$N A(C l=+/-N A ; p=N A)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.971	-1.25\%
Severity	2011.1	$0.004(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.504)$	$0.041(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.210)$	$N A(C l=+/-N A ; p=N A)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.196)$	0.133	+0.38\%
Severity	2011.2	$0.002(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.686)$	$0.037(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.268)$	$N A(C l=+/-N A ; p=N A)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.185)$	0.082	+0.24\%
Severity	2012.1	$-0.001(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.916)$	$0.047(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.169)$	$N A(C l=+/-N A ; p=N A)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.127)$	0.091	-0.07\%
Severity	2012.2	$-0.002(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.789)$	$0.044(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.215)$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.127)$	0.058	-0.19\%
Severity	2013.1	$-0.002(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.795$)	0.045 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.240)$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.143)$	0.049	-0.21\%
Severity	2013.2	$-0.002(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.776)$	$0.044(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.274)$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.155)$	0.026	-0.25\%
Severity	2014.1	$-0.005(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.598)$	$0.051(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.230)$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.138)$	0.034	-0.52\%
Severity	2014.2	$-0.006(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.607)$	0.050 ($\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.265)$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.152)$	0.011	-0.56\%
Severity	2015.1	$-0.003(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.810)$	$0.044(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.369)$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.202)$	-0.015	-0.30\%
Severity	2015.2	$0.000(\mathrm{Cl}=+/-0.030 ; p=0.985)$	0.050 ($\mathrm{Cl}=+/-0.109 ; p=0.334)$	$N A(C l=+/-N A ; p=N A)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.224)$	-0.004	-0.03\%
Severity	2016.1	$0.011(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.456)$	$0.024(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.635)$	$N A(C l=+/-N A ; p=N A)$	$-0.002(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.322)$	0.092	+1.10\%
Severity	2016.2	$0.024(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.051)$	$0.052(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.166)$	$N A(C l=+/-N A ; p=N A)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.159)$	0.550	+2.39\%
Frequency	2011.1	$-0.002(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.652)$	0.075 ($\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.017)$	$N A(C l=+/-N A ; p=N A)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.888	-0.23\%
Frequency	2011.2	$-0.002(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.735)$	$0.077(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.019)$	$N A(C l=+/-N A ; p=N A)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.887	-0.19\%
Frequency	2012.1	$-0.003(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.597)$	$0.081(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.019)$	$N A(C l=+/-N A ; p=N A)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.887	-0.33\%
Frequency	2012.2	$-0.006(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.311$)	0.073 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.031$)	$N A(C l=+/-N A ; p=N A)$	$0.013(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.900	-0.65\%
Frequency	2013.1	$-0.012(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.080)$	$0.089(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.008)$	$N \mathrm{Na}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.920	-1.16\%
Frequency	2013.2	$-0.015(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.036)$	$0.081(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.014)$	$N A(C l=+/-N A ; p=N A)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.928	-1.47\%
Frequency	2014.1	$-0.016(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.048)$	$0.084(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.018)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.925	-1.58\%
Frequency	2014.2	$-0.019(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.032)$	0.078 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.030)$	$N A(C l=+/-N A ; p=N A)$	$0.013(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.929	-1.86\%
Frequency	2015.1	$-0.027(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.004)$	$0.098(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.005)$	$N A(C l=+/-N A ; p=N A)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.950	-2.64\%
Frequency	2015.2	$-0.028(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.006)$	$0.094(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.010)$	$N A(C l=+/-N A ; p=N A)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.950	-2.79\%
Frequency	2016.1	$-0.034(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.003$)	$0.108(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.005$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.955	-3.37\%
Frequency	2016.2	$-0.036(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.005$)	$0.104(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.011)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.954	-3.56\%

AB Total

Coverage $=A B$ Total
End Trend Period = 2019.2
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_trend

Fit	Start Date	Time	Seasonality	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	$0.006(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.469)$	0.104 ($\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.025$)	NA (Cl = +/-NA; $\mathrm{p}=\mathrm{NA}$)	0.233	+0.60\%	+0.60\%
Loss Cost	2011.2	$0.005(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.586)$	$0.101(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.038)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.181	+0.50\%	+0.50\%
Loss Cost	2012.1	$0.000(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.983)$	$0.116(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.022)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.241	-0.02\%	-0.02\%
Loss Cost	2012.2	$-0.007(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.473)$	$0.098(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.040)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.215	-0.73\%	-0.73\%
Loss Cost	2013.1	$-0.015(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.185)$	$0.117(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.018)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.347	-1.46\%	-1.46\%
Loss Cost	2013.2	$-0.022(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.067)$	$0.101(\mathrm{Cl}=+/-0.090 ; p=0.033)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.410	-2.19\%	-2.19\%
Loss Cost	2014.1	$-0.029(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.042)$	$0.115(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.023)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.462	-2.83\%	-2.83\%
Loss Cost	2014.2	$-0.039(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.014)$	$0.096(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.040)$	$N A(C l=+/-N A ; p=N A)$	0.580	-3.80\%	-3.80\%
Loss Cost	2015.1	$-0.052(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.004)$	0.120 ($\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.011$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.719	-5.05\%	-5.05\%
Loss Cost	2015.2	$-0.057(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.008)$	$0.112(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.026)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.731	-5.56\%	-5.56\%
Loss Cost	2016.1	$-0.052(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.044)$	$0.104(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.065$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.548	-5.04\%	-5.04\%
Loss Cost	2016.2	$-0.027(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.094)$	$0.133(\mathrm{Cl}=+/-0.069 ; p=0.006)$	$N A(C l e+/-N A ; p=N A)$	0.840	-2.65\%	-2.65\%
Severity	2011.1	$-0.003(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.657)$	$0.027(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.455)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	-0.081	-0.31\%	-0.31\%
Severity	2011.2	$-0.006(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.390)$	$0.017(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.632)$	NA (Cl $=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.065	-0.64\%	-0.64\%
Severity	2012.1	$-0.012(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.139)$	$0.033(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.362)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.067	-1.17\%	-1.17\%
Severity	2012.2	$-0.016(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.067)$	$0.022(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.538)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.149	-1.59\%	-1.59\%
Severity	2013.1	$-0.018(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.071)$	$0.028(\mathrm{Cl}=+/-0.081 ; p=0.469)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.148	-1.82\%	-1.82\%
Severity	2013.2	$-0.023(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.046)$	$0.018(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.653)$	$N A(C l=+/-N A ; p=N A)$	0.220	-2.28\%	-2.28\%
Severity	2014.1	$-0.031(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.017$)	$0.036(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.357)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.387	-3.09\%	-3.09\%
Severity	2014.2	$-0.039(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.008)$	$0.021(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.571)$	$N A(C l=+/-N A ; p=N A)$	0.518	-3.87\%	-3.87\%
Severity	2015.1	$-0.042(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.018)$	$0.027(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.526)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.451	-4.16\%	-4.16\%
Severity	2015.2	$-0.048(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.027)$	$0.018(\mathrm{Cl}=+/-0.106 ; p=0.696)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.454	-4.73\%	-4.73\%
Severity	2016.1	$-0.035(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.135)$	$-0.002(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.966)$	NA (Cl $=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.163	-3.47\%	-3.47\%
Severity	2016.2	$-0.010(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.485$)	$0.028(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.349)$	$N A(C l e+/-N A ; p=N A)$	-0.050	-0.98\%	-0.98\%
Frequency	2011.1	$0.009(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.033)$	$0.077(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.002)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.544	+0.91\%	+0.91\%
Frequency	2011.2	$0.011(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.013)$	$0.084(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.001)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.604	+1.15\%	+1.15\%
Frequency	2012.1	$0.012(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.025)$	$0.083(\mathrm{Cl}=+/-0.046 ; p=0.002)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.600	+1.16\%	+1.16\%
Frequency	2012.2	$0.009(\mathrm{Cl}=+/-0.010 ; p=0.095)$	$0.076(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.003)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.512	+0.88\%	+0.88\%
Frequency	2013.1	$0.004(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.430)$	$0.089(\mathrm{Cl}=+/-0.040 ; p=0.000)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.654	+0.37\%	+0.37\%
Frequency	2013.2	$0.001(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.860)$	$0.083(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.001)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.618	+0.09\%	+0.09\%
Frequency	2014.1	$0.003(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.645)$	$0.079(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.003)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.590	+0.27\%	+0.27\%
Frequency	2014.2	$0.001(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.915$)	$0.075(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.007)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.529	+0.07\%	+0.07\%
Frequency	2015.1	$-0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.044)$	$0.094(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.890	-0.93\%	-0.93\%
Frequency	2015.2	$-0.009(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.113)$	0.095 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.884	-0.87\%	-0.87\%
Frequency	2016.1	$-0.016(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.001)$	$0.106(\mathrm{Cl}=+/-0.013 ; p=0.000)$	$N A(C l=+/-N A ; p=N A)$	0.985	-1.63\%	-1.63\%
Frequency	2016.2	$-0.017(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.004$)	$0.106(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.984	-1.68\%	-1.68\%

AB Total

Coverage $=A B$ Total
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	ated R^2	Implied Trend
Loss Cost	2011.1	$0.006(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.469$)	$0.104(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.025$)	0.233	+0.60\%
Loss Cost	2011.2	$0.005(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.586)$	$0.101(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.038)$	0.181	+0.50\%
Loss Cost	2012.1	$0.000(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.983)$	0.116 ($\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.022$)	0.241	-0.02\%
Loss Cost	2012.2	$-0.007(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.473)$	$0.098(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.040)$	0.215	-0.73\%
Loss Cost	2013.1	-0.015 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.185$)	0.117 ($\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.018)$	0.347	-1.46\%
Loss Cost	2013.2	-0.022 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.067)$	$0.101(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.033)$	0.410	-2.19\%
Loss Cost	2014.1	-0.029 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.042$)	$0.115(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.023)$	0.462	-2.83\%
Loss Cost	2014.2	$-0.039(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.014)$	0.096 ($\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.040)$	0.580	-3.80\%
Loss Cost	2015.1	$-0.052(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.004)$	0.120 ($\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.011$)	0.719	-5.05\%
Loss Cost	2015.2	-0.057 ($\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.008$)	0.112 ($\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.026)$	0.731	-5.56\%
Loss Cost	2016.1	$-0.052(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.044)$	$0.104(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.065$)	0.548	-5.04\%
Loss Cost	2016.2	-0.027 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.094$)	$0.133(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.006)$	0.840	-2.65\%
Severity	2011.1	$-0.003(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.657)$	$0.027(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.455)$	-0.081	-0.31\%
Severity	2011.2	$-0.006(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.390$)	$0.017(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.632)$	-0.065	-0.64\%
Severity	2012.1	$-0.012(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.139)$	$0.033(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.362)$	0.067	-1.17\%
Severity	2012.2	-0.016 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.067$)	$0.022(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.538)$	0.149	-1.59\%
Severity	2013.1	-0.018 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.071$)	0.028 ($\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.469)$	0.148	-1.82\%
Severity	2013.2	$-0.023(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.046)$	0.018 ($\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.653)$	0.220	-2.28\%
Severity	2014.1	-0.031 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.017$)	$0.036(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.357)$	0.387	-3.09\%
Severity	2014.2	$-0.039(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.008)$	$0.021(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.571)$	0.518	-3.87\%
Severity	2015.1	-0.042 ($\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.018$)	0.027 ($\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.526)$	0.451	-4.16\%
Severity	2015.2	$-0.048(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.027$)	0.018 ($\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.696$)	0.454	-4.73\%
Severity	2016.1	$-0.035(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.135)$	$-0.002(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.966)$	0.163	-3.47\%
Severity	2016.2	$-0.010(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.485$)	0.028 ($\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.349)$	-0.050	-0.98\%
Frequency	2011.1	$0.009(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.033)$	$0.077(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.002)$	0.544	+0.91\%
Frequency	2011.2	$0.011(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.013)$	$0.084(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.001)$	0.604	+1.15\%
Frequency	2012.1	0.012 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.025$)	$0.083(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.002)$	0.600	+1.16\%
Frequency	2012.2	$0.009(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.095)$	0.076 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.003)$	0.512	+0.88\%
Frequency	2013.1	$0.004(\mathrm{Cl}=+/-0.010 ; p=0.430)$	0.089 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000$)	0.654	+0.37\%
Frequency	2013.2	$0.001(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.860)$	$0.083(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.001)$	0.618	+0.09\%
Frequency	2014.1	$0.003(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.645)$	0.079 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.003)$	0.590	+0.27\%
Frequency	2014.2	$0.001(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.915)$	0.075 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.007$)	0.529	+0.07\%
Frequency	2015.1	-0.009 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.044$)	$0.094(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.890	-0.93\%
Frequency	2015.2	$-0.009(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.113)$	0.095 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000$)	0.884	-0.87\%
Frequency	2016.1	-0.016 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.001$)	0.106 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	0.985	-1.63\%
Frequency	2016.2	-0.017 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.004$)	0.106 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.984	-1.68\%

AB Total Medical+Rehab

Coverage $=A B$ Total Medical + Rehab
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality

| | | | | Seasonality | Adjusted R^2 |
| :---: | :---: | :---: | :---: | :---: | :---: | Rate Trend

AB Total Medical+Rehab

Coverage $=A B$ Total Medical+Rehab
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_scalar

Fit	Start Date	Time	Se	Phase in Scalar	Adjusted R^2	Implied Trend Rate
Loss Cost	2011.1	$0.004(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.847)$	0.170 ($\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.010$)	$-0.218(\mathrm{Cl}=+/-0.282 ; \mathrm{p}=0.122)$	0.391	+0.37\%
Loss Cost	2011.2	$0.002(\mathrm{Cl}=+/-0.043 ; p=0.922)$	$0.167(\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.014)$	$-0.211(\mathrm{Cl}=+/-0.296 ; \mathrm{p}=0.152)$	0.388	+0.20\%
Loss Cost	2012.1	$-0.008(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.703)$	$0.187(\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.007)$	$-0.171(\mathrm{Cl}=+/-0.296 ; \mathrm{p}=0.239)$	0.446	-0.82\%
Loss Cost	2012.2	$-0.016(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.475)$	$0.172(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.014)$	$-0.145(\mathrm{Cl}=+/-0.297 ; \mathrm{p}=0.317)$	0.476	-1.60\%
Loss Cost	2013.1	$-0.027(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.239)$	$0.196(\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.006)$	$-0.116(\mathrm{Cl}=+/-0.287 ; \mathrm{p}=0.406)$	0.547	-2.66\%
Loss Cost	2013.2	$-0.032(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.179)$	$0.183(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.011)$	$-0.107(\mathrm{Cl}=+/-0.290 ; p=0.445)$	0.567	-3.17\%
Loss Cost	2014.1	$-0.039(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.113)$	$0.203(\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.006)$	$-0.103(\mathrm{Cl}=+/-0.286 ; \mathrm{p}=0.452)$	0.595	-3.81\%
Loss Cost	2014.2	$-0.042(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.099)$	$0.191(\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.013)$	$-0.111(\mathrm{Cl}=+/-0.293 ; \mathrm{p}=0.426)$	0.608	-4.10\%
Loss Cost	2015.1	$-0.046(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.065)$	0.215 ($\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.007)$	$-0.141(\mathrm{Cl}=+/-0.287 ; \mathrm{p}=0.305)$	0.646	-4.54\%
Loss Cost	2015.2	$-0.047(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.077)$	$0.212(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.012)$	$-0.147(\mathrm{Cl}=+/-0.317 ; \mathrm{p}=0.329)$	0.627	-4.55\%
Loss Cost	2016.1	$-0.047(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.089)$	$0.223(\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.015)$	$-0.187(\mathrm{Cl}=+/-0.376 ; \mathrm{p}=0.293)$	0.554	-4.55\%
Loss Cost	2016.2	$-0.051(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.076)$	$0.246(\mathrm{Cl}=+/-0.184 ; \mathrm{p}=0.014)$	$-0.006(\mathrm{Cl}=+/-0.614 ; \mathrm{p}=0.984)$	0.513	-5.01\%
Severity	2011.1	0.045 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.033(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.145)$	$-0.313(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.000)$	0.661	+4.59\%
Severity	2011.2	$0.046(\mathrm{Cl}=+/-0.016 ; p=0.000)$	$0.035(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.138)$	$-0.318(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.000)$	0.646	+4.71\%
Severity	2012.1	0.045 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.036(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.143)$	$-0.315(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.000)$	0.630	+4.63\%
Severity	2012.2	0.046 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.037(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.150)$	$-0.317(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.000)$	0.617	+4.70\%
Severity	2013.1	0.048 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.032(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.226)$	$-0.323(\mathrm{Cl}=+/-0.120 ; p=0.000)$	0.629	+4.94\%
Severity	2013.2	0.049 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.034(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.234)$	$-0.324(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.000)$	0.623	+4.99\%
Severity	2014.1	0.048 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.037(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.221)$	$-0.324(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.000)$	0.623	+4.88\%
Severity	2014.2	$0.047(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.001)$	$0.034(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.286)$	$-0.326(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.000)$	0.622	+4.80\%
Severity	2015.1	0.048 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.001)$	$0.030(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.373)$	$-0.321(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.000)$	0.603	+4.88\%
Severity	2015.2	$0.047(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.002)$	$0.027(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.452)$	$-0.328(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.001)$	0.597	+4.86\%
Severity	2016.1	$0.047(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.003)$	0.019 ($\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.608)$	$-0.299(\mathrm{Cl}=+/-0.182 ; \mathrm{p}=0.004)$	0.539	+4.86\%
Severity	2016.2	$0.045(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.005)$	$0.031(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.453)$	$-0.209(\mathrm{Cl}=+/-0.296 ; \mathrm{p}=0.145)$	0.499	+4.61\%
Frequency	2011.1	$-0.041(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.079)$	$0.137(\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.063)$	0.095 ($\mathrm{Cl}=+/-0.331 ; \mathrm{p}=0.558)$	0.278	-4.03\%
Frequency	2011.2	$-0.044(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.084)$	$0.132(\mathrm{Cl}=+/-0.152 ; \mathrm{p}=0.084)$	$0.107(\mathrm{Cl}=+/-0.347 ; \mathrm{p}=0.528)$	0.274	-4.30\%
Frequency	2012.1	$-0.054(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.050)$	$0.151(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.057)$	0.144 ($\mathrm{Cl}=+/-0.354 ; \mathrm{p}=0.405)$	0.310	-5.21\%
Frequency	2012.2	$-0.062(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.033)$	$0.135(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.091)$	0.172 ($\mathrm{Cl}=+/-0.358 ; \mathrm{p}=0.326$)	0.347	-6.02\%
Frequency	2013.1	$-0.075(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.012)$	$0.163(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.042)$	0.208 ($\mathrm{Cl}=+/-0.346 ; \mathrm{p}=0.221$)	0.437	-7.24\%
Frequency	2013.2	$-0.081(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.010)$	$0.150(\mathrm{Cl}=+/-0.162 ; \mathrm{p}=0.068)$	0.217 ($\mathrm{Cl}=+/-0.351 ; \mathrm{p}=0.207)$	0.457	-7.77\%
Frequency	2014.1	$-0.087(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.009)$	$0.166(\mathrm{Cl}=+/-0.170 ; \mathrm{p}=0.054)$	0.220 ($\mathrm{Cl}=+/-0.357 ; \mathrm{p}=0.206)$	0.459	-8.29\%
Frequency	2014.2	$-0.089(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.011)$	$0.157(\mathrm{Cl}=+/-0.180 ; \mathrm{p}=0.083)$	0.214 ($\mathrm{Cl}=+/-0.371 ; \mathrm{p}=0.234)$	0.459	-8.50\%
Frequency	2015.1	$-0.094(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.007)$	$0.185(\mathrm{Cl}=+/-0.183 ; \mathrm{p}=0.048)$	0.180 ($\mathrm{Cl}=+/-0.368 ; \mathrm{p}=0.308)$	0.515	-8.98\%
Frequency	2015.2	$-0.094(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.011)$	$0.185(\mathrm{Cl}=+/-0.200 ; p=0.065)$	0.181 ($\mathrm{Cl}=+/-0.407 ; \mathrm{p}=0.349$)	0.496	-8.98\%
Frequency	2016.1	$-0.094(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.013)$	$0.203(\mathrm{Cl}=+/-0.215 ; \mathrm{p}=0.061)$	$0.112(\mathrm{Cl}=+/-0.477 ; \mathrm{p}=0.613)$	0.489	-8.98\%
Frequency	2016.2	$-0.096(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.019)$	$0.215(\mathrm{Cl}=+/-0.242 ; \mathrm{p}=0.075)$	$0.203(\mathrm{Cl}=+/-0.807 ; \mathrm{p}=0.583)$	0.468	-9.19\%

AB Total Medical+Rehab

Coverage $=A B$ Total Medical + Rehab
End Trend Period = 2022.2
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_trend

Fit	Start Date	Time	Seasonality	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.033 (CI $=+/-0.035 ; \mathrm{p}=0.069$)	0.174 ($\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.002$)	$-0.104(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.002$)	0.585	+3.32\%	-6.87\%
Loss Cost	2011.2	$0.039(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.058)$	$0.181(\mathrm{Cl}=+/-0.106 ; p=0.002)$	$-0.113(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.002)$	0.594	+4.02\%	-7.05\%
Loss Cost	2012.1	$0.032(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.174)$	$0.189(\mathrm{Cl}=+/-0.110 ; p=0.002)$	$-0.104(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.008)$	0.600	+3.26\%	-6.90\%
Loss Cost	2012.2	0.028 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.320$)	$0.185(\mathrm{Cl}=+/-0.117 ; p=0.004)$	$-0.098(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.023$)	0.593	+2.83\%	-6.81\%
Loss Cost	2013.1	$0.013(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.703)$	$0.196(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.003)$	$-0.081(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.089)$	0.607	+1.27\%	-6.58\%
Loss Cost	2013.2	$0.009(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.836)$	$0.193(\mathrm{Cl}=+/-0.129 ; p=0.006)$	$-0.076(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.174)$	0.603	+0.87\%	-6.52\%
Loss Cost	2014.1	$-0.012(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.830)$	$0.202(\mathrm{Cl}=+/-0.136 ; p=0.006)$	$-0.054(\mathrm{Cl}=+/-0.139 ; \mathrm{p}=0.422)$	0.597	-1.15\%	-6.32\%
Loss Cost	2014.2	$-0.026(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.724)$	$0.197(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.012)$	$-0.038(\mathrm{Cl}=+/-0.184 ; \mathrm{p}=0.665)$	0.594	-2.59\%	-6.20\%
Loss Cost	2015.1	$-0.120(\mathrm{Cl}=+/-0.220 ; \mathrm{p}=0.257)$	$0.219(\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.007$)	$0.062(\mathrm{Cl}=+/-0.246 ; \mathrm{p}=0.594)$	0.622	-11.35\%	-5.70\%
Loss Cost	2015.2	$-0.175(\mathrm{Cl}=+/-0.385 ; \mathrm{p}=0.340)$	$0.211(\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.015)$	0.118 ($\mathrm{Cl}=+/-0.411 ; \mathrm{p}=0.540$)	0.605	-16.02\%	-5.50\%
Loss Cost	2016.1	$-0.611(\mathrm{Cl}=+/-0.866 ; \mathrm{p}=0.147)$	$0.238(\mathrm{Cl}=+/-0.166 ; p=0.010)$	0.562 ($\mathrm{Cl}=+/-0.889 ; \mathrm{p}=0.190$)	0.581	-45.71\%	-4.80\%
Loss Cost	2016.2	$0.133(\mathrm{Cl}=+/-4.545 ; \mathrm{p}=0.949)$	$0.248(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.015)$	$-0.186(\mathrm{Cl}=+/-4.571 ; \mathrm{p}=0.929)$	0.513	+14.21\%	-5.14\%
Severity	2011.1	$0.004(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.766)$	$0.039(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.308)$	$0.003(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.880)$	-0.026	+0.39\%	+0.73\%
Severity	2011.2	$0.000(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.986)$	$0.034(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.389)$	$0.009(\mathrm{Cl}=+/-0.050 ; p=0.720)$	-0.066	-0.03\%	+0.85\%
Severity	2012.1	$-0.009(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.586)$	$0.043(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.288)$	0.020 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.450$)	-0.047	-0.95\%	+1.06\%
Severity	2012.2	$-0.018(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.385)$	$0.036(\mathrm{Cl}=+/-0.086 ; p=0.391)$	0.030 ($\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.311$)	-0.047	-1.78\%	+1.25\%
Severity	2013.1	$-0.024(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.337)$	0.040 ($\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.361$)	$0.038(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.278)$	-0.043	-2.39\%	+1.35\%
Severity	2013.2	$-0.038(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.235)$	$0.032(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.479)$	$0.053(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.199)$	-0.023	-3.68\%	+1.56\%
Severity	2014.1	$-0.068(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.091)$	$0.046(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.323)$	$0.086(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.082)$	0.078	-6.53\%	+1.88\%
Severity	2014.2	$-0.117(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.028)$	$0.029(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.525)$	0.140 ($\mathrm{Cl}=+/-0.120 ; p=0.026$)	0.211	-11.00\%	+2.34\%
Severity	2015.1	$-0.171(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.025)$	$0.041(\mathrm{Cl}=+/-0.098 ; p=0.378)$	$0.197(\mathrm{Cl}=+/-0.162 ; \mathrm{p}=0.022)$	0.239	-15.69\%	+2.65\%
Severity	2015.2	$-0.345(\mathrm{Cl}=+/-0.212 ; \mathrm{p}=0.004)$	$0.016(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.699)$	$0.377(\mathrm{Cl}=+/-0.226 ; \mathrm{p}=0.004)$	0.467	-29.15\%	+3.35\%
Severity	2016.1	$-0.690(\mathrm{Cl}=+/-0.435 ; \mathrm{p}=0.005$)	$0.037(\mathrm{Cl}=+/-0.084 ; p=0.345)$	$0.729(\mathrm{Cl}=+/-0.447 ; \mathrm{p}=0.005)$	0.534	-49.84\%	+3.95\%
Severity	2016.2	$-1.421(\mathrm{Cl}=+/-2.232 ; \mathrm{p}=0.184)$	$0.027(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.532)$	$1.463(\mathrm{Cl}=+/-2.244 ; \mathrm{p}=0.174)$	0.483	-75.85\%	+4.32\%
Frequency	2011.1	$0.029(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.162)$	$0.134(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.029)$	$-0.107(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.004)$	0.517	+2.91\%	-7.55\%
Frequency	2011.2	0.040 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.093$)	$0.147(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.020)$	$-0.121(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.003)$	0.537	+4.05\%	-7.84\%
Frequency	2012.1	$0.042(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.132)$	0.145 ($\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.029$)	$-0.124(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.006)$	0.531	+4.25\%	-7.88\%
Frequency	2012.2	$0.046(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.165)$	0.149 ($\mathrm{Cl}=+/-0.136 ; p=0.033)$	$-0.129(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.012)$	0.528	+4.69\%	-7.96\%
Frequency	2013.1	$0.037(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.352)$	$0.155(\mathrm{Cl}=+/-0.143 ; p=0.035)$	$-0.118(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.039)$	0.528	+3.75\%	-7.83\%
Frequency	2013.2	$0.046(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.355)$	$0.161(\mathrm{Cl}=+/-0.152 ; \mathrm{p}=0.040)$	$-0.129(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.058)$	0.527	+4.73\%	-7.96\%
Frequency	2014.1	$0.056(\mathrm{Cl}=+/-0.135 ; \mathrm{p}=0.388)$	$0.156(\mathrm{Cl}=+/-0.162 ; \mathrm{p}=0.058)$	-0.140 ($\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.093$)	0.507	+5.76\%	-8.05\%
Frequency	2014.2	0.090 ($\mathrm{Cl}=+/-0.185 ; \mathrm{p}=0.311$)	$0.168(\mathrm{Cl}=+/-0.173 ; p=0.055)$	$-0.177(\mathrm{Cl}=+/-0.217 ; \mathrm{p}=0.101)$	0.511	+9.46\%	-8.34\%
Frequency	2015.1	0.050 ($\mathrm{Cl}=+/-0.276 ; \mathrm{p}=0.699$)	$0.178(\mathrm{Cl}=+/-0.185 ; p=0.059)$	$-0.135(\mathrm{Cl}=+/-0.308 ; \mathrm{p}=0.358)$	0.507	+5.15\%	-8.13\%
Frequency	2015.2	0.170 ($\mathrm{Cl}=+/-0.475 ; \mathrm{p}=0.448$)	$0.195(\mathrm{Cl}=+/-0.199 ; p=0.054)$	$-0.259(\mathrm{Cl}=+/-0.507 ; \mathrm{p}=0.284)$	0.509	+18.53\%	-8.56\%
Frequency	2016.1	$0.079(\mathrm{Cl}=+/-1.147 ; \mathrm{p}=0.881)$	$0.200(\mathrm{Cl}=+/-0.220 ; p=0.070)$	$-0.167(\mathrm{Cl}=+/-1.177 ; \mathrm{p}=0.758)$	0.480	+8.22\%	-8.42\%
Frequency	2016.2	$1.554(\mathrm{Cl}=+/-5.959 ; \mathrm{p}=0.570)$	$0.222(\mathrm{Cl}=+/-0.246 ; p=0.072)$	$-1.649(\mathrm{Cl}=+/-5.993 ; \mathrm{p}=0.549)$	0.471	+372.86\%	-9.06\%

AB Total Medical+Rehab

Coverage $=$ AB Total Medical+Rehab
End Trend Period $=2022$.
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_scalar, phase_in_trend

Fit	Start Date	Time	Seasonality	Phase in Scalar	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	$0.057(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.011)$	0.169 ($\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.002$)	-0.204 ($\mathrm{Cl}=+/-0.219 ; \mathrm{p}=0.066$)	-0.102 (CI $=+/-0.056 ; \mathrm{p}=0.001)$	0.636	+5.88\%	-4.38\%
Loss Cost	2011.2	$0.071(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.006)$	$0.181(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.001)$	$-0.232(\mathrm{Cl}=+/-0.221 ; \mathrm{p}=0.041)$	$-0.116(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.001)$	0.662	+7.38\%	-4.34\%
Loss Cost	2012.1	$0.068(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.024)$	$0.183(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.001)$	$-0.226(\mathrm{Cl}=+/-0.235 ; \mathrm{p}=0.058)$	$-0.113(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.003)$	0.659	+7.05\%	-4.36\%
Loss Cost	2012.2	$0.071(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.050)$	$0.185(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.002)$	$-0.231(\mathrm{Cl}=+/-0.251 ; \mathrm{p}=0.069)$	$-0.115(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.007)$	0.651	+7.36\%	-4.35\%
Loss Cost	2013.1	$0.061(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.164)$	$0.190(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.003)$	$-0.216(\mathrm{Cl}=+/-0.269 ; \mathrm{p}=0.108)$	$-0.106(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.031)$	0.649	+6.31\%	-4.39\%
Loss Cost	2013.2	$0.071(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.206)$	$0.194(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.004)$	$-0.229(\mathrm{Cl}=+/-0.292 ; \mathrm{p}=0.116)$	$-0.116(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.056)$	0.646	+7.41\%	-4.37\%
Loss Cost	2014.1	$0.066(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.381)$	$0.196(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.007)$	$-0.223(\mathrm{Cl}=+/-0.325 ; \mathrm{p}=0.162)$	$-0.111(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.154)$	0.629	+6.82\%	-4.39\%
Loss Cost	2014.2	$0.082(\mathrm{Cl}=+/-0.226 ; \mathrm{p}=0.444)$	$0.200(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.010)$	$-0.237(\mathrm{Cl}=+/-0.366 ; \mathrm{p}=0.184)$	$-0.127(\mathrm{Cl}=+/-0.226 ; \mathrm{p}=0.244)$	0.623	+8.57\%	-4.36\%
Loss Cost	2015.1	$-0.009(\mathrm{Cl}=+/-0.353 ; \mathrm{p}=0.958)$	$0.213(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.010)$	$-0.173(\mathrm{Cl}=+/-0.420 ; \mathrm{p}=0.385)$	$-0.038(\mathrm{Cl}=+/-0.348 ; \mathrm{p}=0.816)$	0.616	-0.86\%	-4.53\%
Loss Cost	2015.2	$0.016(\mathrm{Cl}=+/-0.673 ; \mathrm{p}=0.959)$	$0.215(\mathrm{Cl}=+/-0.167 ; \mathrm{p}=0.017)$	$-0.185(\mathrm{Cl}=+/-0.528 ; \mathrm{p}=0.453)$	$-0.062(\mathrm{Cl}=+/-0.666 ; \mathrm{p}=0.840)$	0.591	+1.60\%	-4.51\%
Loss Cost	2016.1	$-0.776(\mathrm{Cl}=+/-2.059 ; \mathrm{p}=0.416)$	$0.241(\mathrm{Cl}=+/-0.182 ; \mathrm{p}=0.015)$	$0.075(\mathrm{Cl}=+/-0.836 ; \mathrm{p}=0.843)$	$0.724(\mathrm{Cl}=+/-2.044 ; \mathrm{p}=0.443)$	0.537	-53.98\%	-5.06\%
Loss Cost	2016.2	$3.109(\mathrm{Cl}=+/-18.326 ; \mathrm{p}=0.706)$	$0.258(\mathrm{Cl}=+/-0.209 ; \mathrm{p}=0.022)$	$-0.414(\mathrm{Cl}=+/-2.456 ; \mathrm{p}=0.708)$	$-3.157(\mathrm{Cl}=+/-18.304 ; \mathrm{p}=0.701$)	0.462	+2140.53\%	-4.65\%
Severity	2011.1	$0.042(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.033(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.153)$	$-0.314(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.000$)	$0.006(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.630)$	0.648	+4.24\%	+4.90\%
Severity	2011.2	$0.043(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001)$	$0.034(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.156)$	$-0.317(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.747)$	0.628	+4.42\%	+4.91\%
Severity	2012.1	0.040 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.009$)	$0.036(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.150)$	$-0.311(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.643)$	0.614	+4.10\%	+4.89\%
Severity	2012.2	$0.040(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.028)$	$0.036(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.171)$	$-0.312(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.000)$	$0.007(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.698)$	0.597	+4.12\%	+4.89\%
Severity	2013.1	$0.049(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.032)$	$0.032(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.242)$	$-0.324(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.983)$	0.604	+4.98\%	+4.93\%
Severity	2013.2	$0.053(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.066)$	$0.034(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.246)$	$-0.329(\mathrm{Cl}=+/-0.144 ; \mathrm{p}=0.000)$	$-0.005(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.866)$	0.597	+5.43\%	+4.94\%
Severity	2014.1	$0.043(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.243)$	$0.037(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.237)$	$-0.319(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.001)$	$0.004(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.903)$	0.595	+4.44\%	+4.91\%
Severity	2014.2	$0.020(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.695)$	$0.032(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.330)$	$-0.299(\mathrm{Cl}=+/-0.176 ; \mathrm{p}=0.003)$	$0.027(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.591)$	0.600	+2.02\%	+4.86\%
Severity	2015.1	$0.025(\mathrm{Cl}=+/-0.174 ; \mathrm{p}=0.760)$	$0.031(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.378)$	$-0.302(\mathrm{Cl}=+/-0.207 ; \mathrm{p}=0.008)$	$0.023(\mathrm{Cl}=+/-0.172 ; \mathrm{p}=0.774)$	0.571	+2.50\%	+4.87\%
Severity	2015.2	$-0.098(\mathrm{Cl}=+/-0.315 ; \mathrm{p}=0.504)$	$0.021(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.557)$	$-0.240(\mathrm{Cl}=+/-0.247 ; \mathrm{p}=0.056)$	$0.144(\mathrm{Cl}=+/-0.312 ; \mathrm{p}=0.326)$	0.600	-9.33\%	+4.75\%
Severity	2016.1	$-0.330(\mathrm{Cl}=+/-0.992 ; \mathrm{p}=0.471)$	$0.029(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.474)$	$-0.163(\mathrm{Cl}=+/-0.402 ; \mathrm{p}=0.382)$	$0.375(\mathrm{Cl}=+/-0.984 ; \mathrm{p}=0.411)$	0.526	-28.11\%	+4.57\%
Severity	2016.2	$0.563(\mathrm{Cl}=+/-8.927 ; \mathrm{p}=0.888)$	$0.033(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.479)$	$-0.276(\mathrm{Cl}=+/-1.197 ; \mathrm{p}=0.609)$	$-0.518(\mathrm{Cl}=+/-8.916 ; \mathrm{p}=0.897)$	0.438	+75.66\%	+4.68\%
Frequency	2011.1	0.016 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.548$)	$0.137(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.028)$	$0.110(\mathrm{Cl}=+/-0.274 ; \mathrm{p}=0.411$)	$-0.108(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.004)$	0.510	+1.56\%	-8.85\%
Frequency	2011.2	$0.028(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.353)$	$0.147(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.023)$	$0.085(\mathrm{Cl}=+/-0.283 ; \mathrm{p}=0.534)$	$-0.120(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.004)$	0.522	+2.84\%	-8.81\%
Frequency	2012.1	$0.028(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.438)$	$0.147(\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.030)$	$0.085(\mathrm{Cl}=+/-0.301 ; \mathrm{p}=0.557)$	$-0.120(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.010)$	0.513	+2.84\%	-8.81\%
Frequency	2012.2	$0.031(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.486)$	$0.149(\mathrm{Cl}=+/-0.139 ; \mathrm{p}=0.038)$	$0.081(\mathrm{Cl}=+/-0.322 ; \mathrm{p}=0.600)$	$-0.123(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.021)$	0.507	+3.11\%	-8.80\%
Frequency	2013.1	$0.013(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.817)$	$0.158(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.036)$	$0.108(\mathrm{Cl}=+/-0.343 ; \mathrm{p}=0.513)$	$-0.106(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.083)$	0.512	+1.26\%	-8.88\%
Frequency	2013.2	$0.019(\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.791$)	$0.160(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.045)$	$0.100(\mathrm{Cl}=+/-0.374 ; \mathrm{p}=0.574)$	$-0.111(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.140)$	0.505	+1.88\%	-8.87\%
Frequency	2014.1	0.023 ($\mathrm{Cl}=+/-0.201 ; \mathrm{p}=0.812$)	$0.159(\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.062)$	$0.096(\mathrm{Cl}=+/-0.415 ; \mathrm{p}=0.625$)	$-0.115(\mathrm{Cl}=+/-0.202 ; \mathrm{p}=0.240)$	0.479	+2.28\%	-8.86\%
Frequency	2014.2	$0.062(\mathrm{Cl}=+/-0.288 ; \mathrm{p}=0.647)$	$0.168(\mathrm{Cl}=+/-0.181 ; \mathrm{p}=0.066)$	$0.062(\mathrm{Cl}=+/-0.465 ; \mathrm{p}=0.778)$	$-0.154(\mathrm{Cl}=+/-0.287 ; \mathrm{p}=0.264)$	0.474	+6.41\%	-8.80\%
Frequency	2015.1	$-0.033(\mathrm{Cl}=+/-0.452 ; \mathrm{p}=0.874)$	$0.182(\mathrm{Cl}=+/-0.194 ; \mathrm{p}=0.063)$	$0.129(\mathrm{Cl}=+/-0.539 ; \mathrm{p}=0.608)$	$-0.061(\mathrm{Cl}=+/-0.446 ; \mathrm{p}=0.770)$	0.475	-3.28\%	-8.97\%
Frequency	2015.2	$0.114(\mathrm{Cl}=+/-0.854 ; \mathrm{p}=0.772)$	$0.194(\mathrm{Cl}=+/-0.211 ; \mathrm{p}=0.069)$	$0.055(\mathrm{Cl}=+/-0.670 ; \mathrm{p}=0.860)$	$-0.206(\mathrm{Cl}=+/-0.845 ; \mathrm{p}=0.598)$	0.462	+12.06\%	-8.84\%
Frequency	2016.1	$-0.446(\mathrm{Cl}=+/-2.697 ; p=0.717)$	$0.212(\mathrm{Cl}=+/-0.239 ; \mathrm{p}=0.075)$	$0.239(\mathrm{Cl}=+/-1.095 ; \mathrm{p}=0.634)$	$0.349(\mathrm{Cl}=+/-2.676 ; \mathrm{p}=0.774)$	0.437	-35.99\%	-9.21\%
Frequency	2016.2	$2.546(\mathrm{Cl}=+/-24.239 ; \mathrm{p}=0.815)$	$0.225(\mathrm{Cl}=+/-0.276 ; \mathrm{p}=0.097)$	$-0.138(\mathrm{Cl}=+/-3.249 ; \mathrm{p}=0.924)$	$-2.639(\mathrm{Cl}=+/-24.210 ; \mathrm{p}=0.808)$	0.406	+1175.52\%	-8.91\%

AB Total Medical+Rehab

Coverage $=A B$ Total Medical + Rehab
End Trend Period = 2022
Excluded Points $=$ NA
Parameters Included: time, seasonality, phase_in_trend, mobility

Fit	Start Date	Time	Seasonality	Phase in Trend	Mobility	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.030 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.010$)	0.129 ($\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.000)$	-0.060 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.005$)	0.009 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.847	+3.02\%	-3.01\%
Loss Cost	2011.2	$0.034(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.010)$	$0.135(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.000)$	$-0.066(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.005$)	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.851	+3.49\%	-3.17\%
Loss Cost	2012.1	$0.028(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.052)$	$0.141(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.000)$	$-0.060(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.015)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.856	+2.89\%	-3.07\%
Loss Cost	2012.2	0.020 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.219$)	$0.133(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.001)$	$-0.049(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.062)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.860	+2.07\%	-2.85\%
Loss Cost	2013.1	$0.008(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.683)$	0.143 ($\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.001$)	$-0.035(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.209)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.872	+0.78\%	-2.68\%
Loss Cost	2013.2	$-0.003(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.901$)	$0.136(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.002)$	$-0.022(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.490)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.876	-0.29\%	-2.48\%
Loss Cost	2014.1	$-0.018(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.542)$	0.143 ($\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.002$)	$-0.005(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.885)$	$0.009(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.877	-1.81\%	-2.34\%
Loss Cost	2014.2	$-0.048(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.239)$	$0.132(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.004)$	$0.027(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.564)$	$0.009(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.887	-4.66\%	-2.01\%
Loss Cost	2015.1	$-0.129(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.016)$	$0.152(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.001)$	$0.113(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.051)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.923	-12.14\%	-1.64\%
Loss Cost	2015.2	$-0.235(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.007)$	$0.135(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.001)$	$0.224(\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.013)$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.940	-20.94\%	-1.11\%
Loss Cost	2016.1	$-0.597(\mathrm{Cl}=+/-0.213 ; \mathrm{p}=0.000)$	$0.159(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	$0.591(\mathrm{Cl}=+/-0.219 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.975	-44.96\%	-0.60\%
Loss Cost	2016.2	$-0.779(\mathrm{Cl}=+/-1.144 ; \mathrm{p}=0.155)$	$0.156(\mathrm{Cl}=+/-0.050 ; p=0.000)$	$0.774(\mathrm{Cl}=+/-1.152 ; \mathrm{p}=0.160)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.971	-54.12\%	-0.49\%
Severity	2011.1	$0.005(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.699)$	$0.054(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.162)$	$-0.011(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.628)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.118)$	0.054	+0.49\%	-0.63\%
Severity	2011.2	$0.001(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.922)$	$0.050(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.216)$	$-0.006(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.800)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.134)$	0.010	+0.14\%	-0.50\%
Severity	2012.1	$-0.008(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.621)$	$0.060(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.146)$	$0.005(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.852)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.121)$	0.042	-0.82\%	-0.32\%
Severity	2012.2	$-0.016(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.435)$	$0.053(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.214)$	$0.014(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.635)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.140)$	0.033	-1.55\%	-0.11\%
Severity	2013.1	$-0.023(\mathrm{Cl}=+/-0.050 ; p=0.352)$	$0.058(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.195)$	$0.022(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.516)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.145)$	0.039	-2.23\%	-0.02\%
Severity	2013.2	$-0.034(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.269$)	$0.051(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.279)$	$0.036(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.384)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.170)$	0.046	-3.33\%	+0.20\%
Severity	2014.1	$-0.065(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.089)$	$0.066(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.163)$	$0.070(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.143)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.140)$	0.165	-6.32\%	+0.48\%
Severity	2014.2	$-0.110(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.032)$	$0.048(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.295)$	$0.120(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.048)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.162)$	0.279	-10.43\%	+1.01\%
Severity	2015.1	$-0.168(\mathrm{Cl}=+/-0.139 ; \mathrm{p}=0.022)$	$0.062(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.187)$	$0.180(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.027)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.139)$	0.326	-15.45\%	+1.28\%
Severity	2015.2	$-0.329(\mathrm{Cl}=+/-0.202 ; \mathrm{p}=0.005)$	$0.036(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.386)$	$0.349(\mathrm{Cl}=+/-0.218 ; \mathrm{p}=0.005)$	$-0.003(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.144)$	0.531	-28.00\%	+2.11\%
Severity	2016.1	$-0.694(\mathrm{Cl}=+/-0.382 ; \mathrm{p}=0.003)$	$0.060(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.112)$	0.720 ($\mathrm{Cl}=+/-0.393 ; \mathrm{p}=0.002$)	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.067)$	0.651	-50.04\%	+2.64\%
Severity	2016.2	$-1.165(\mathrm{Cl}=+/-2.030 ; p=0.222)$	$0.053(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.210)$	$1.194(\mathrm{Cl}=+/-2.044 ; \mathrm{p}=0.215)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.095$)	0.598	-68.81\%	+2.93\%
Frequency	2011.1	$0.025(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.005$)	$0.075(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.004)$	$-0.049(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.003)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.926	+2.51\%	-2.39\%
Frequency	2011.2	$0.033(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001)$	$0.085(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.001)$	$-0.060(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.939	+3.34\%	-2.68\%
Frequency	2012.1	$0.037(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.001)$	$0.081(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.002)$	$-0.065(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.001)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.940	+3.74\%	-2.75\%
Frequency	2012.2	$0.036(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.006)$	$0.081(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.004)$	$-0.064(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.002)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.939	+3.67\%	-2.74\%
Frequency	2013.1	$0.030(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.042)$	$0.085(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.004)$	$-0.057(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.010)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.941	+3.08\%	-2.66\%
Frequency	2013.2	$0.031(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.095$)	$0.085(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.006)$	$-0.058(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.027)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.940	+3.14\%	-2.67\%
Frequency	2014.1	0.047 ($\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.046$)	$0.078(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.012)$	$-0.075(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.015)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.944	+4.81\%	-2.81\%
Frequency	2014.2	$0.062(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.051)$	$0.084(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.011)$	$-0.093(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.020)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.945	+6.44\%	-2.99\%
Frequency	2015.1	$0.038(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.378)$	$0.090(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.011)$	-0.068 ($\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.178$)	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.947	+3.90\%	-2.88\%
Frequency	2015.2	$0.094(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.211)$	$0.099(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.009)$	$-0.126(\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.127)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.949	+9.81\%	-3.15\%
Frequency	2016.1	$0.097(\mathrm{Cl}=+/-0.378 ; \mathrm{p}=0.576)$	$0.098(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.018)$	$-0.129(\mathrm{Cl}=+/-0.388 ; \mathrm{p}=0.471)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.945	+10.17\%	-3.15\%
Frequency	2016.2	$0.386(\mathrm{Cl}=+/-2.029 ; \mathrm{p}=0.673)$	$0.103(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.028)$	$-0.420(\mathrm{Cl}=+/-2.043 ; \mathrm{p}=0.648)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.942	+47.10\%	-3.32\%

AB Total Medical+Rehab

Coverage $=A B$ Total Medical + Rehab
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_trend

Fit	Start Date	Time	Seasonality	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.041 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.001$)	0.109 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.003$)	-0.116 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.001$)	0.633	+4.20\%	-7.22\%
Loss Cost	2011.2	$0.047(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.001)$	$0.118(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.002)$	$-0.127(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.001)$	0.642	+4.84\%	-7.62\%
Loss Cost	2012.1	$0.044(\mathrm{Cl}=+/-0.030 ; p=0.007)$	$0.122(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.003)$	$-0.122(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.002)$	0.631	+4.50\%	-7.46\%
Loss Cost	2012.2	0.037 ($\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.043$)	$0.114(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.008)$	$-0.111(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.007$)	0.556	+3.75\%	-7.10\%
Loss Cost	2013.1	$0.028(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.183)$	$0.122(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.008)$	$-0.098(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.024)$	0.574	+2.81\%	-6.77\%
Loss Cost	2013.2	$0.018(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.473)$	$0.115(\mathrm{Cl}=+/-0.089 ; p=0.017)$	$-0.085(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.079)$	0.542	+1.86\%	-6.43\%
Loss Cost	2014.1	$0.011(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.751)$	$0.120(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.024)$	$-0.075(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.183)$	0.527	+1.08\%	-6.24\%
Loss Cost	2014.2	$-0.018(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.692)$	$0.106(\mathrm{Cl}=+/-0.107 ; ~ p=0.052)$	$-0.039(\mathrm{Cl}=+/-0.150 ; \mathrm{p}=0.555)$	0.550	-1.79\%	-5.57\%
Loss Cost	2015.1	$-0.089(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.151)$	0.128 ($\mathrm{Cl}=+/-0.100 ; p=0.020$)	$0.042(\mathrm{Cl}=+/-0.172 ; \mathrm{p}=0.571)$	0.687	-8.52\%	-4.58\%
Loss Cost	2015.2	$-0.204(\mathrm{Cl}=+/-0.199 ; \mathrm{p}=0.046)$	$0.103(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.039)$	$0.170(\mathrm{Cl}=+/-0.236 ; \mathrm{p}=0.123)$	0.798	-18.42\%	-3.29\%
Loss Cost	2016.1	$-0.527(\mathrm{Cl}=+/-0.224 ; \mathrm{p}=0.003)$	$0.133(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.002)$	$0.510(\mathrm{Cl}=+/-0.242 ; \mathrm{p}=0.004)$	0.938	-40.99\%	-1.71\%
Loss Cost	2016.2	$-0.865(\mathrm{Cl}=+/-1.431 ; \mathrm{p}=0.150)$	$0.125(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.011)$	$0.854(\mathrm{Cl}=+/-1.458 ; \mathrm{p}=0.159)$	0.910	-57.90\%	-1.16\%
Severity	2011.1	$0.022(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.052)$	$0.038(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.234)$	$-0.095(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.003)$	0.423	+2.18\%	-7.07\%
Severity	2011.2	0.020 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.122)$	$0.036(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.295)$	$-0.092(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.008)$	0.395	+2.00\%	-6.96\%
Severity	2012.1	0.013 ($\mathrm{Cl}=+/-0.030 ; p=0.364$)	$0.044(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.217)$	$-0.082(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.022)$	0.417	+1.31\%	-6.63\%
Severity	2012.2	$0.008(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.640)$	$0.039(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.307)$	$-0.074(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.056)$	0.412	+0.80\%	-6.37\%
Severity	2013.1	$0.007(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.754)$	0.040 ($\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.332$)	$-0.072(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.098)$	0.392	+0.67\%	-6.33\%
Severity	2013.2	$0.000(\mathrm{Cl}=+/-0.060 ; p=0.987)$	$0.034(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.440)$	$-0.062(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.214)$	0.391	-0.05\%	-6.06\%
Severity	2014.1	$-0.024(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.489)$	0.048 ($\mathrm{Cl}=+/-0.100 ; p=0.299)$	$-0.033(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.548)$	0.463	-2.35\%	-5.49\%
Severity	2014.2	$-0.064(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.164)$	$0.029(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.523)$	$0.018(\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.775)$	0.572	-6.21\%	-4.53\%
Severity	2015.1	$-0.101(\mathrm{Cl}=+/-0.147 ; \mathrm{p}=0.143)$	0.040 ($\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.409)$	$0.060(\mathrm{Cl}=+/-0.191 ; \mathrm{p}=0.471)$	0.537	-9.62\%	-4.01\%
Severity	2015.2	$-0.260(\mathrm{Cl}=+/-0.174 ; \mathrm{p}=0.012)$	$0.006(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.859)$	$0.238(\mathrm{Cl}=+/-0.206 ; \mathrm{p}=0.031)$	0.806	-22.91\%	-2.20\%
Severity	2016.1	$-0.532(\mathrm{Cl}=+/-0.232 ; \mathrm{p}=0.003)$	$0.031(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.174)$	0.523 ($\mathrm{Cl}=+/-0.250 ; p=0.004)$	0.907	-41.25\%	-0.87\%
Severity	2016.2	$-0.820(\mathrm{Cl}=+/-1.525 ; \mathrm{p}=0.186)$	$0.024(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.385)$	$0.816(\mathrm{Cl}=+/-1.553 ; \mathrm{p}=0.193)$	0.539	-55.96\%	-0.39\%
Frequency	2011.1	0.020 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.007)$	$0.071(\mathrm{Cl}=+/-0.040 ; p=0.002)$	$-0.021(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.214)$	0.626	+1.97\%	-0.16\%
Frequency	2011.2	$0.027(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.082(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	$-0.035(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.028)$	0.764	+2.78\%	-0.71\%
Frequency	2012.1	$0.031(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.078(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	-0.040 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.019$)	0.782	+3.15\%	-0.89\%
Frequency	2012.2	0.029 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.004$)	$0.075(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.001)$	$-0.037(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.048)$	0.689	+2.93\%	-0.78\%
Frequency	2013.1	0.021 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.037)$	$0.082(\mathrm{Cl}=+/-0.037 ; p=0.001)$	$-0.026(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.152)$	0.713	+2.13\%	-0.48\%
Frequency	2013.2	0.019 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.128$)	$0.081(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.002)$	$-0.023(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.276)$	0.619	+1.91\%	-0.39\%
Frequency	2014.1	$0.034(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.021)$	$0.071(\mathrm{Cl}=+/-0.037 ; p=0.002)$	$-0.043(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.056)$	0.734	+3.51\%	-0.80\%
Frequency	2014.2	0.046 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.024$)	$0.077(\mathrm{Cl}=+/-0.039 ; p=0.002)$	$-0.057(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.043)$	0.710	+4.71\%	-1.09\%
Frequency	2015.1	$0.012(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.461)$	$0.088(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	-0.018 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.401$)	0.865	+1.21\%	-0.59\%
Frequency	2015.2	$0.057(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.009)$	$0.097(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$-0.068(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.009)$	0.964	+5.81\%	-1.11\%
Frequency	2016.1	$0.004(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.836)$	$0.102(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$-0.013(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.579)$	0.987	+0.44\%	-0.85\%
Frequency	2016.2	$-0.045(\mathrm{Cl}=+/-0.373 ; \mathrm{p}=0.725$)	$0.101(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.037(\mathrm{Cl}=+/-0.380 ; p=0.774)$	0.985	-4.42\%	-0.77\%

AB Total Medical+Rehab

Coverage $=$ AB Total Medical 1 Rehab
End Trend Period $=2022$
Excluded Points = NA

Fit	Start Date	Time	Seasonality	Phase in Scalar	Phase in Trend	Mobility	Adjusted R^{\wedge} 2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	$0.058(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.122(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	-0.240 ($\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.000$)	-0.056 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.945	+6.01\%	+0.26\%
Loss Cost	2011.2	$0.070(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.133(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	$-0.263(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.000)$	-0.068 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000$)	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.965	+7.26\%	+0.23\%
Loss Cost	2012.1	$0.070(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.132(\mathrm{Cl}=+/-0.034 ; p=0.000)$	-0.263 ($\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.000$)	-0.068 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.965	+7.27\%	+0.24\%
Loss Cost	2012.2	$0.069(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.132(\mathrm{Cl}=+/-0.036 ; p=0.000)$	$-0.261(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.000)$	$-0.067(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.964	.15\%	+0.24\%
Loss Cost	2013.1	$0.065(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	$0.134(\mathrm{Cl}=+/-0.039 ; p=0.000)$	$-0.255(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.000)$	-0.063 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.001$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.964	+6.69\%	+0.20\%
Loss Cost	2013.2	$0.068(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.002)$	$0.135(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	-0.258 ($\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.000)$	$-0.066(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.004)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.963	+7.00\%	+0.20\%
Loss Cost	2014.1	$0.074(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.008)$	$0.133(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000)$	$-0.265(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.000)$	$-0.071(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.011)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.962	+7.63\%	+0.23\%
Loss Cost	2014.2	$0.072(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.054)$	$0.133(\mathrm{Cl}=+/-0.049 ; p=0.000)$	$-0.264(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.001$)	$-0.070(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.063)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.961	+7.51\%	+0.23\%
Loss Cost	2015.1	$0.014(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.774$)	$0.142(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	$-0.222(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.003)$	$-0.013(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.780)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.967	+1.41\%	+0.06\%
Loss Cost	2015.2	$-0.029(\mathrm{Cl}=+/-0.199 ; \mathrm{p}=0.748)$	$0.139(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.000)$	$-0.200(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.017)$	$0.030(\mathrm{Cl}=+/-0.198 ; \mathrm{p}=0.743)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.965	-2.88\%	+0.04\%
Loss Cost	2016.1	$-0.492(\mathrm{Cl}=+/-0.508 ; \mathrm{p}=0.056)$	0.156 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000$)	$-0.047(\mathrm{Cl}=+/-0.206 ; \mathrm{p}=0.610)$	$0.488(\mathrm{Cl}=+/-0.503 ; \mathrm{p}=0.056)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.973	-38.89\%	-0.40\%
Loss Cost	2016.2	$0.099(\mathrm{Cl}=+/-4.638 ; \mathrm{p}=0.961)$	$0.159(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.000)$	$-0.122(\mathrm{Cl}=+/-0.619 ; \mathrm{p}=0.656)$	$-0.102(\mathrm{Cl}=+/-4.634 ; \mathrm{p}=0.960)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.968	+10.39\%	-0.36\%
Severity	2011.1	$0.041(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.045 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.040$)	$-0.305(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.000)$	$-0.006(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.661$)	$-0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.026$)	0.720	+4.21\%	+3.63\%
Severity	2011.2	$0.044(\mathrm{Cl}=+/-0.021 ; p=0.001)$	$0.047(\mathrm{Cl}=+/-0.045 ; p=0.041)$	$-0.309(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.000)$	$-0.008(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.572)$	$-0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.029)$	0.705	+4.45\%	+3.63\%
Severity	2012.1	0.040 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.005$)	$0.050(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.038)$	$-0.302(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.772)$	$-0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.030)$	0.696	+4.04\%	+3.58\%
Severity	2012.2	$0.041(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.014)$	$0.051(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.047)$	$-0.304(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.000)$	$-0.006(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.748)$	$-0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.036)$	0.683	+4.18\%	+3.58\%
Severity	2013.1	$0.048(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.021)$	$0.047(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.076)$	$-0.314(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.000)$	$-0.012(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.565)$	-0.003 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.044$)	0.686	+4.88\%	+3.64\%
Severity	2013.2	$0.054(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.039)$	$0.050(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.078)$	$-0.321(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.000)$	-0.018 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.481)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.049)$	0.682	+5.54\%	+3.64\%
Severity	2014.1	$0.041(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.212)$	$0.054(\mathrm{Cl}=+/-0.060 ; p=0.073)$	$-0.307(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.000)$	$-0.006(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.846)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.051$)	0.684	+4.22\%	+3.57\%
Severity	2014.2	0.023 ($\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.620)$	$0.050(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.117)$	$-0.291(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.002)$	0.012 ($\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.788$)	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.064)$. 685	+2.29\%	+3.56\%
Severity	2015.1	$0.019(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.798)$	$0.050(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.145$)	$-0.288(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.006)$	$0.016(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.819)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.078)$	0.659	+1.87\%	+3.55\%
Severity	2015.2	$-0.086(\mathrm{Cl}=+/-0.287 ; ~ \mathrm{p}=0.513)$	$0.041(\mathrm{Cl}=+/-0.075 ; p=0.248)$	$-0.236(\mathrm{Cl}=+/-0.225 ; \mathrm{p}=0.042)$	$0.121(\mathrm{Cl}=+/-0.285 ; \mathrm{p}=0.362)$	$-0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.095$)	0.679	-8.28\%	+3.50\%
Severity	2016.1	$-0.409(\mathrm{Cl}=+/-0.889 ; \mathrm{p}=0.319)$	$0.053(\mathrm{Cl}=+/-0.083 ; p=0.181)$	$-0.129(\mathrm{Cl}=+/-0.361 ; \mathrm{p}=0.433)$	$0.441(\mathrm{Cl}=+/-0.881 ; \mathrm{p}=0.282)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.088)$	0.638	-33.60\%	+3.18\%
Severity	2016.2	$1.448(\mathrm{Cl}=+1-7.998 ; \mathrm{p}=0.682)$	$0.062(\mathrm{Cl}=+/-0.097 ; p=0.176)$	$-0.362(\mathrm{Cl}=+/-1.067 ; \mathrm{p}=0.449)$	$-1.415(\mathrm{Cl}=+/-7.991 ; \mathrm{p}=0.688)$	$-0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.097$)	0.579	+325.25\%	+3.33\%
Frequency	2011.1	$0.017(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.095$)	$0.077(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.003)$	$0.064(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.217$)	$-0.050(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.002)$	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.928	+1.73\%	-3.26\%
Frequency	2011.2	$0.027(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.022)$	$0.086(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.001)$	0.046 ($\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.353$)	$-0.060(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.001)$	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.939	+2.69\%	-3.27\%
Frequency	2012.1	$0.031(\mathrm{Cl}=+/-0.027 ; p=0.027)$	$0.083(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.002)$	$0.039(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.458)$	$-0.063(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.001)$	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.939	+3.10\%	-3.23\%
Frequency	2012.2	$0.028(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.085)$	$0.081(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.004)$	$0.042(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.444)$	$-0.061(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.004)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.938	+2.85\%	-3.23\%
Frequency	2013.1	$0.017(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.371)$	$0.087(\mathrm{Cl}=+/-0.053 ; p=0.003)$	$0.059(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.310)$	$-0.051(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.026)$	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.941	+1.72\%	-3.32\%
Frequency	2013.2	$0.014(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.576)$	0.086 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.006$)	$0.063(\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.316)$	$-0.047(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.086)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.940	+1.38\%	-3.32\%
Frequency	2014.1	$0.032(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.324)$	$0.079(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.013)$	0.043 ($\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.522$)	$-0.065(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.065)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.941	+3.27\%	-3.22\%
Frequency	2014.2	$0.050(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.284)$	$0.084(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.015$)	0.028 ($\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.707$)	$-0.082(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.092)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.941	+5.11\%	-3.21\%
Frequency	2015.1	$-0.005(\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.946)$	$0.092(\mathrm{Cl}=+/-0.067 ; p=0.012)$	$0.066(\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.423)$	$-0.030(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.660)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.945	-0.46\%	-3.37\%
Frequency	2015.2	$0.057(\mathrm{Cl}=+/-0.280 ; \mathrm{p}=0.654)$	$0.098(\mathrm{Cl}=+/-0.073 ; p=0.014)$	$0.035(\mathrm{Cl}=+/-0.219 ; \mathrm{p}=0.724)$	$-0.091(\mathrm{Cl}=+/-0.278 ; \mathrm{p}=0.476)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.944	+5.89\%	-3.35\%
Frequency	2016.1	$-0.083(\mathrm{Cl}=+/-0.900 ; \mathrm{p}=0.837)$	$0.103(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.023)$	$0.082(\mathrm{Cl}=+/-0.366 ; \mathrm{p}=0.621)$	$0.048(\mathrm{Cl}=+/-0.892 ; \mathrm{p}=0.905$)	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.940	-7.96\%	-3.48\%
Frequency	2016.2	$-1.349(\mathrm{Cl}=+/-8.196 ; \mathrm{p}=0.709)$	$0.097(\mathrm{Cl}=+/-0.100 ; p=0.055)$	0.240 ($\mathrm{Cl}=+/-1.094 ; \mathrm{p}=0.620)$	$1.312(\mathrm{Cl}=+/-8.189 ; \mathrm{p}=0.716)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.937	-74.04\%	-3.57\%

AB Total Medical+Rehab

Coverage $=A B$ Total Medical+Rehab
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_scalar, phase_in_trend

Fit	Start Date	Time	Seasonality	Phase in Scalar	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	$0.059(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.103(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	$-0.250(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.000)$	$-0.053(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.030)$	0.850	+6.08\%	+0.60\%
Loss Cost	2011.2	$0.070(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.115(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.000)$	$-0.273(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.000)$	$-0.063(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.002)$	0.919	+7.23\%	+0.72\%
Loss Cost	2012.1	$0.071(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.113(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	$-0.276(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.000)$	$-0.064(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.004$)	0.915	+7.38\%	+0.76\%
Loss Cost	2012.2	$0.069(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.111(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$-0.271(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.000)$	$-0.061(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.008)$	0.893	+7.10\%	+0.73\%
Loss Cost	2013.1	$0.066(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	$0.113(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$-0.268(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.000)$	$-0.060(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.016)$	0.889	+6.87\%	+0.69\%
Loss Cost	2013.2	$0.067(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.003)$	$0.113(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.001)$	$-0.268(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.001)$	$-0.060(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.032)$	0.874	+6.89\%	+0.69\%
Loss Cost	2014.1	$0.077(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.009)$	$0.108(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.002)$	$-0.282(\mathrm{Cl}=+/-0.137 ; p=0.002)$	$-0.069(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.035)$	0.876	+8.06\%	+0.86\%
Loss Cost	2014.2	$0.070(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.071)$	$0.105(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.005)$	$-0.274(\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.006)$	$-0.062(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.129)$	0.866	+7.21\%	+0.81\%
Loss Cost	2015.1	$0.023(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.630)$	$0.116(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.005$)	$-0.236(\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.018)$	$-0.020(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.685)$	0.889	+2.37\%	+0.39\%
Loss Cost	2015.2	$-0.048(\mathrm{Cl}=+/-0.227 ; \mathrm{p}=0.589)$	$0.107(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.015)$	$-0.196(\mathrm{Cl}=+/-0.216 ; \mathrm{p}=0.065$)	$0.049(\mathrm{Cl}=+/-0.222 ; \mathrm{p}=0.569)$	0.902	-4.69\%	+0.14\%
Loss Cost	2016.1	$-0.436(\mathrm{Cl}=+/-0.606 ; \mathrm{p}=0.106)$	$0.129(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.009)$	$-0.048(\mathrm{Cl}=+/-0.282 ; \mathrm{p}=0.626)$	$0.425(\mathrm{Cl}=+/-0.586 ; \mathrm{p}=0.104)$	0.924	-35.36\%	-1.13\%
Loss Cost	2016.2	$-1.490(\mathrm{Cl}=+/-8.332 ; \mathrm{p}=0.522$)	$0.122(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.050)$	$0.093(\mathrm{Cl}=+/-1.191 ; \mathrm{p}=0.769)$	$1.474(\mathrm{Cl}=+/-8.294 ; \mathrm{p}=0.524)$	0.872	-77.46\%	-1.56\%
Severity	2011.1	$0.041(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.031(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.092)$	$-0.269(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.000)$	$-0.027(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.177)$	0.824	+4.17\%	+1.40\%
Severity	2011.2	$0.042(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.033(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.097)$	$-0.272(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.000)$	$-0.028(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.180)$	0.815	+4.32\%	+1.41\%
Severity	2012.1	$0.039(\mathrm{Cl}=+/-0.020 ; p=0.001)$	$0.036(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.088)$	$-0.265(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.000)$	$-0.026(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.233)$	0.813	+3.99\%	+1.32\%
Severity	2012.2	$0.039(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.007)$	$0.036(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.116)$	$-0.265(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.001)$	$-0.026(\mathrm{Cl}=+/-0.050 ; p=0.273)$	0.804	+3.98\%	+1.32\%
Severity	2013.1	$0.047(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.009)$	$0.030(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.197)$	$-0.279(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.001)$	$-0.032(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.198)$	0.816	+4.82\%	+1.50\%
Severity	2013.2	$0.051(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.026)$	$0.032(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.211)$	$-0.284(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.002)$	$-0.035(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.217)$	0.811	+5.19\%	+1.53\%
Severity	2014.1	$0.040(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.153)$	$0.037(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.193)$	$-0.270(\mathrm{Cl}=+/-0.160 ; \mathrm{p}=0.005)$	$-0.027(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.414)$	0.813	+4.10\%	+1.36\%
Severity	2014.2	$0.014(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.690)$	$0.028(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.325)$	$-0.245(\mathrm{Cl}=+/-0.172 ; \mathrm{p}=0.013)$	$-0.002(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.954)$	0.836	+1.44\%	+1.21\%
Severity	2015.1	$0.017(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.778)$	$0.028(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.407)$	$-0.247(\mathrm{Cl}=+/-0.218 ; \mathrm{p}=0.033)$	$-0.005(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.938)$	0.794	+1.71\%	+1.24\%
Severity	2015.2	$-0.128(\mathrm{Cl}=+/-0.209 ; \mathrm{p}=0.163)$	$0.009(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.725)$	$-0.165(\mathrm{Cl}=+/-0.198 ; \mathrm{p}=0.081$)	$0.136(\mathrm{Cl}=+/-0.203 ; \mathrm{p}=0.138)$	0.897	-12.06\%	+0.72\%
Severity	2016.1	$-0.449(\mathrm{Cl}=+/-0.633 ; \mathrm{p}=0.109)$	$0.027(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.308)$	$-0.044(\mathrm{Cl}=+/-0.295 ; \mathrm{p}=0.668)$	$0.445(\mathrm{Cl}=+/-0.613 ; \mathrm{p}=0.104)$	0.884	-36.15\%	-0.33\%
Severity	2016.2	$-1.208(\mathrm{Cl}=+/-9.042 ; \mathrm{p}=0.623)$	$0.022(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.550)$	$0.058(\mathrm{Cl}=+/-1.292 ; \mathrm{p}=0.865)$	$1.202(\mathrm{Cl}=+/-9.001 ; \mathrm{p}=0.624)$	0.321	-70.12\%	-0.64\%
Frequency	2011.1	$0.018(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.030)$	$0.071(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.003)$	$0.019(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.723)$	$-0.026(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.248)$	0.601	+1.83\%	-0.79\%
Frequency	2011.2	$0.028(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.002)$	$0.082(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.985)$	$-0.034(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.079)$	0.745	+2.79\%	-0.69\%
Frequency	2012.1	$0.032(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.002)$	$0.077(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.001)$	$-0.011(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.809)$	$-0.038(\mathrm{Cl}=+/-0.040 ; p=0.060)$	0.763	+3.26\%	-0.55\%
Frequency	2012.2	$0.030(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.014)$	$0.075(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.002)$	$-0.007(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.890$)	$-0.035(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.096$)	0.659	+3.01\%	-0.58\%
Frequency	2013.1	$0.019(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.121)$	$0.083(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.001)$	$0.011(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.812)$	$-0.027(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.176)$	0.683	+1.96\%	-0.80\%
Frequency	2013.2	$0.016(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.312)$	$0.081(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.003)$	$0.016(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.758)$	$-0.024(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.286)$	0.577	+1.62\%	-0.83\%
Frequency	2014.1	0.037 ($\mathrm{Cl}=+/-0.039 ; p=0.060$)	$0.071(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.004)$	$-0.012(\mathrm{Cl}=+/-0.106 ; p=0.801)$	$-0.042(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.076)$	0.699	+3.80\%	-0.50\%
Frequency	2014.2	$0.055(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.048)$	$0.077(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.004)$	$-0.029(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.550)$	$-0.059(\mathrm{Cl}=+/-0.060 ; p=0.052)$	0.683	+5.69\%	-0.40\%
Frequency	2015.1	$0.006(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.793)$	$0.088(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.001)$	$0.012(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.754)$	$-0.015(\mathrm{Cl}=+/-0.060 ; p=0.552)$	0.841	+0.65\%	-0.84\%
Frequency	2015.2	$0.080(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.010)$	$0.098(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$-0.030(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.140)$	$-0.086(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.007$)	0.976	+8.37\%	-0.58\%
Frequency	2016.1	$0.012(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.818)$	$0.102(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.866$)	$-0.020(\mathrm{Cl}=+/-0.150 ; \mathrm{p}=0.696$)	0.983	+1.23\%	-0.80\%
Frequency	2016.2	$-0.282(\mathrm{Cl}=+/-2.102 ; \mathrm{p}=0.622)$	$0.100(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.005$)	$0.035(\mathrm{Cl}=+/-0.300 ; p=0.664)$	$0.273(\mathrm{Cl}=+/-2.092 ; \mathrm{p}=0.631)$	0.980	-24.56\%	-0.92\%

AB Total DI

Coverage $=A B$ Total DI
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time

Fit	Start Date	Time	2	Implied Trend Rate
Loss Cost	2011.1	-0.026 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.021$)	0.183	-2.57\%
Loss Cost	2011.2	$-0.030(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.015)$	0.217	-2.94\%
Loss Cost	2012.1	$-0.033(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.013)$	0.235	-3.26\%
Loss Cost	2012.2	-0.040 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.005$)	0.316	-3.94\%
Loss Cost	2013.1	$-0.044(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.005)$	0.323	-4.26\%
Loss Cost	2013.2	$-0.051(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.003)$	0.384	-4.95\%
Loss Cost	2014.1	$-0.054(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.004)$	0.371	-5.22\%
Loss Cost	2014.2	$-0.061(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.003)$	0.417	-5.96\%
Loss Cost	2015.1	$-0.066(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.004)$	0.411	-6.40\%
Loss Cost	2015.2	-0.074 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.005$)	0.427	-7.09\%
Loss Cost	2016.1	$-0.072(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.014)$	0.356	-6.93\%
Loss Cost	2016.2	-0.072 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.032)$	0.296	-6.96\%
Severity	2011.1	$0.017(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.611	+1.73\%
Severity	2011.2	0.016 ($\mathrm{Cl}=+/-0.006 ; p=0.000)$	0.560	+1.65\%
Severity	2012.1	0.015 ($\mathrm{Cl}=+/-0.007 ; p=0.000)$	0.503	+1.56\%
Severity	2012.2	0.015 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.467	+1.56\%
Severity	2013.1	0.018 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.545	+1.81\%
Severity	2013.2	0.019 (Cl $=+/-0.009 ; p=0.000)$	0.529	+1.88\%
Severity	2014.1	0.018 ($\mathrm{Cl}=+/-0.010 ; p=0.001)$	0.478	+1.86\%
Severity	2014.2	0.019 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.002)$	0.435	+1.88\%
Severity	2015.1	0.020 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.004)$	0.428	+2.02\%
Severity	2015.2	0.020 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.009)$	0.371	+2.01\%
Severity	2016.1	$0.024(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.005)$	0.449	+2.42\%
Severity	2016.2	0.030 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.001$)	0.588	+3.06\%
Frequency	2011.1	$-0.043(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.414	-4.23\%
Frequency	2011.2	-0.046 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.421	-4.52\%
Frequency	2012.1	$-0.049(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.001)$	0.414	-4.74\%
Frequency	2012.2	$-0.056(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.479	-5.41\%
Frequency	2013.1	$-0.061(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.510	-5.96\%
Frequency	2013.2	$-0.069(\mathrm{Cl}=+/-0.030 ; p=0.000)$	0.564	-6.70\%
Frequency	2014.1	$-0.072(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.000)$	0.542	-6.95\%
Frequency	2014.2	-0.080 ($\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000$)	0.575	-7.69\%
Frequency	2015.1	$-0.086(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	0.575	-8.25\%
Frequency	2015.2	$-0.093(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.001)$	0.579	-8.92\%
Frequency	2016.1	$-0.096(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.002)$	0.536	-9.13\%
Frequency	2016.2	$-0.102(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.003)$	0.514	-9.72\%

AB Total DI

Coverage $=A B$ Total $D I$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality

Fit				Implied Trend Adjusted R^2 Rate	
	Start Date	Time	Seasonality		
Loss Cost	2011.1	$-0.028(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.008)$	0.162 ($\mathrm{Cl}=+/-0.137 ; \mathrm{p}=0.023$)	0.335	-2.74\%
Loss Cost	2011.2	$-0.030(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.009)$	$0.154(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.036)$	0.344	-2.94\%
Loss Cost	2012.1	$-0.035(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.004)$	$0.174(\mathrm{Cl}=+/-0.143 ; p=0.019)$	0.401	-3.47\%
Loss Cost	2012.2	-0.040 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.002$)	$0.157(\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.035)$	0.440	-3.94\%
Loss Cost	2013.1	$-0.046(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.001)$	0.178 ($\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.020)$	0.484	-4.52\%
Loss Cost	2013.2	$-0.051(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.001)$	$0.164(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.035)$	0.508	-4.95\%
Loss Cost	2014.1	$-0.057(\mathrm{Cl}=+/-0.030 ; p=0.001)$	$0.184(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.023)$	0.529	-5.54\%
Loss Cost	2014.2	$-0.061(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.001)$	$0.171(\mathrm{Cl}=+/-0.162 ; \mathrm{p}=0.040)$	0.542	-5.96\%
Loss Cost	2015.1	$-0.071(\mathrm{Cl}=+/-0.036 ; p=0.001)$	0.197 ($\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.023)$	0.581	-6.83\%
Loss Cost	2015.2	$-0.074(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.002)$	0.190 ($\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.037$)	0.574	-7.09\%
Loss Cost	2016.1	$-0.078(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.004)$	$0.201(\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.042)$	0.526	-7.50\%
Loss Cost	2016.2	$-0.072(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.016)$	$0.214(\mathrm{Cl}=+/-0.208 ; \mathrm{p}=0.045)$	0.493	-6.96\%
Severity	2011.1	$0.017(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.696)$	0.596	+1.73\%
Severity	2011.2	0.016 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.005(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.814)$	0.540	+1.65\%
Severity	2012.1	0.015 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.687)$	0.482	+1.55\%
Severity	2012.2	0.015 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.001$)	$0.009(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.685)$	0.442	+1.56\%
Severity	2013.1	0.018 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.046 ; p=0.970)$	0.518	+1.80\%
Severity	2013.2	0.019 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.888)$	0.500	+1.88\%
Severity	2014.1	0.018 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.001$)	$0.004(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.863)$	0.444	+1.85\%
Severity	2014.2	0.019 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.003)$	$0.005(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.850)$	0.396	+1.88\%
Severity	2015.1	0.020 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.005$)	$0.001(\mathrm{Cl}=+/-0.059 ; p=0.967)$	0.384	+2.01\%
Severity	2015.2	0.020 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.013$)	$0.001(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.974)$	0.319	+2.01\%
Severity	2016.1	$0.024(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.007)$	$-0.010(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.743$)	0.405	+2.45\%
Severity	2016.2	0.030 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.002$)	$0.003(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.924)$	0.547	+3.06\%
Frequency	2011.1	$-0.045(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.154(\mathrm{Cl}=+/-0.137 ; \mathrm{p}=0.030)$	0.512	-4.39\%
Frequency	2011.2	-0.046 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	0.149 ($\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.043$)	0.507	-4.52\%
Frequency	2012.1	$-0.051(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.166 ($\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.029$)	0.524	-4.94\%
Frequency	2012.2	$-0.056(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.148 ($\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.050$)	0.558	-5.41\%
Frequency	2013.1	$-0.064(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$0.177(\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.018)$	0.630	-6.21\%
Frequency	2013.2	$-0.069(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	$0.161(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.033)$	0.655	-6.70\%
Frequency	2014.1	$-0.075(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.180 ($\mathrm{Cl}=+/-0.150 ; \mathrm{p}=0.022$)	0.660	-7.26\%
Frequency	2014.2	$-0.080(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	0.166 ($\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.039$)	0.668	-7.69\%
Frequency	2015.1	$-0.091(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.000)$	0.196 ($\mathrm{Cl}=+/-0.154 ; \mathrm{p}=0.017)$	0.710	-8.67\%
Frequency	2015.2	$-0.093(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.189(\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.028)$	0.699	-8.92\%
Frequency	2016.1	$-0.102(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	$0.211(\mathrm{Cl}=+/-0.174 ; \mathrm{p}=0.022)$	0.693	-9.72\%
Frequency	2016.2	$-0.102(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.001$)	$0.211(\mathrm{Cl}=+/-0.191 ; \mathrm{p}=0.033)$	0.668	-9.72\%

AB Total DI

Coverage $=A B$ Total DI
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, phase_in_scalar

					Implied Trend
Fit	Start Date	Time	Phase in Scalar	Adjusted R^2	Rate
Loss Cost	2011.1	$-0.012(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.608)$	-0.110 ($\mathrm{Cl}=+/-0.350 ; \mathrm{p}=0.519$)	0.161	-1.22\%
Loss Cost	2011.2	$-0.020(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.446)$	$-0.079(\mathrm{Cl}=+/-0.362 ; \mathrm{p}=0.654)$	0.186	-1.94\%
Loss Cost	2012.1	$-0.026(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.358)$	$-0.056(\mathrm{Cl}=+/-0.375 ; \mathrm{p}=0.758)$	0.199	-2.52\%
Loss Cost	2012.2	$-0.038(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.183)$	$-0.013(\mathrm{Cl}=+/-0.370 ; \mathrm{p}=0.941)$	0.278	-3.76\%
Loss Cost	2013.1	$-0.044(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.155)$	$0.001(\mathrm{Cl}=+/-0.381 ; \mathrm{p}=0.994)$	0.284	-4.28\%
Loss Cost	2013.2	$-0.053(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.092)$	0.018 (Cl $=+/-0.377 ; ~ p=0.919)$	0.345	-5.20\%
Loss Cost	2014.1	$-0.056(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.092)$	0.020 ($\mathrm{Cl}=+/-0.389 ; \mathrm{p}=0.916$)	0.330	-5.49\%
Loss Cost	2014.2	$-0.062(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.068)$	$0.007(\mathrm{Cl}=+/-0.390 ; \mathrm{p}=0.971)$	0.376	-6.05\%
Loss Cost	2015.1	$-0.065(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.069)$	$-0.011(\mathrm{Cl}=+/-0.408 ; \mathrm{p}=0.956)$	0.366	-6.26\%
Loss Cost	2015.2	$-0.066(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.068)$	$-0.059(\mathrm{Cl}=+/-0.435 ; \mathrm{p}=0.772)$	0.384	-6.42\%
Loss Cost	2016.1	$-0.066(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.081)$	$-0.056(\mathrm{Cl}=+/-0.519 ; \mathrm{p}=0.816)$	0.301	-6.43\%
Loss Cost	2016.2	$-0.064(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.110)$	$-0.146(\mathrm{Cl}=+/-0.852 ; \mathrm{p}=0.711)$	0.237	-6.23\%
Severity	2011.1	$0.032(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$-0.122(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.004)$	0.731	+3.29\%
Severity	2011.2	0.032 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$-0.119(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.006$)	0.687	+3.24\%
Severity	2012.1	$0.031(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$-0.117(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.009)$	0.637	+3.17\%
Severity	2012.2	$0.032(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	-0.120 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.010$)	0.614	+3.28\%
Severity	2013.1	0.037 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$-0.133(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.002)$	0.732	+3.75\%
Severity	2013.2	0.038 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$-0.136(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.002)$	0.732	+3.90\%
Severity	2014.1	0.038 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$-0.135(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.003)$	0.702	+3.89\%
Severity	2014.2	0.038 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$-0.136(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.004)$	0.676	+3.87\%
Severity	2015.1	0.038 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$-0.134(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.006)$	0.664	+3.89\%
Severity	2015.2	0.038 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$-0.147(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.005)$	0.659	+3.84\%
Severity	2016.1	0.038 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$-0.143(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.016)$	0.655	+3.84\%
Severity	2016.2	0.038 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001$)	$-0.141(\mathrm{Cl}=+/-0.182 ; \mathrm{p}=0.116)$	0.650	+3.83\%
Frequency	2011.1	-0.045 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.072$)	0.012 ($\mathrm{Cl}=+/-0.350 ; \mathrm{p}=0.946$)	0.386	-4.37\%
Frequency	2011.2	$-0.051(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.056)$	0.041 ($\mathrm{Cl}=+/-0.363 ; \mathrm{p}=0.818$)	0.393	-5.02\%
Frequency	2012.1	$-0.057(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.051)$	0.061 ($\mathrm{Cl}=+/-0.378 ; \mathrm{p}=0.739$)	0.387	-5.52\%
Frequency	2012.2	$-0.071(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.020)$	$0.107(\mathrm{Cl}=+/-0.369 ; p=0.549)$	0.461	-6.81\%
Frequency	2013.1	$-0.081(\mathrm{Cl}=+/-0.060 ; p=0.011)$	$0.134(\mathrm{Cl}=+/-0.368 ; \mathrm{p}=0.453)$	0.499	-7.74\%
Frequency	2013.2	$-0.092(\mathrm{Cl}=+/-0.060 ; p=0.005)$	$0.154(\mathrm{Cl}=+/-0.357 ; \mathrm{p}=0.374)$	0.560	-8.76\%
Frequency	2014.1	$-0.095(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.006$)	0.155 ($\mathrm{Cl}=+/-0.368 ; \mathrm{p}=0.383$)	0.537	-9.02\%
Frequency	2014.2	$-0.100(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.005$)	0.142 ($\mathrm{Cl}=+/-0.368 ; \mathrm{p}=0.420)$	0.566	-9.55\%
Frequency	2015.1	$-0.103(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.005$)	0.124 ($\mathrm{Cl}=+/-0.383 ; \mathrm{p}=0.498$)	0.558	-9.77\%
Frequency	2015.2	$-0.104(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.006$)	0.088 ($\mathrm{Cl}=+/-0.413 ; \mathrm{p}=0.651$)	0.552	-9.89\%
Frequency	2016.1	$-0.104(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.009)$	$0.087(\mathrm{Cl}=+/-0.493 ; \mathrm{p}=0.705)$	0.500	-9.89\%
Frequency	2016.2	$-0.102(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.015)$	$-0.005(\mathrm{Cl}=+/-0.808 ; \mathrm{p}=0.989)$	0.466	-9.69\%

AB Total DI

Coverage $=A B$ Total $D I$
End Trend Period $=2022.2$
Excluded Points $=$ NA
Parameters Included: time, phase_in_trend

Fit	Start Date	Time	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.035 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.112)$	$-0.113(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.005)$	0.420	+3.60\%	-7.51\%
Loss Cost	2011.2	$0.036(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.167)$	$-0.114(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.009)$	0.417	+3.62\%	-7.51\%
Loss Cost	2012.1	0.040 ($\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.190)$	$-0.119(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.015)$	0.416	+4.04\%	-7.60\%
Loss Cost	2012.2	$0.029(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.419)$	$-0.105(\mathrm{Cl}=+/-0.105 ; p=0.049)$	0.422	+2.89\%	-7.39\%
Loss Cost	2013.1	$0.035(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.421)$	$-0.112(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.068)$	0.415	+3.52\%	-7.49\%
Loss Cost	2013.2	$0.021(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.694)$	$-0.097(\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.175)$	0.418	+2.12\%	-7.31\%
Loss Cost	2014.1	$0.035(\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.610)$	$-0.113(\mathrm{Cl}=+/-0.179 ; \mathrm{p}=0.199)$	0.401	+3.61\%	-7.46\%
Loss Cost	2014.2	$0.010(\mathrm{Cl}=+/-0.199 ; \mathrm{p}=0.916)$	$-0.085(\mathrm{Cl}=+/-0.234 ; \mathrm{p}=0.447)$	0.402	+1.00\%	-7.26\%
Loss Cost	2015.1	$0.003(\mathrm{Cl}=+/-0.299 ; \mathrm{p}=0.983)$	$-0.078(\mathrm{Cl}=+/-0.334 ; \mathrm{p}=0.622)$	0.378	+0.30\%	-7.22\%
Loss Cost	2015.2	$-0.116(\mathrm{Cl}=+/-0.509 ; \mathrm{p}=0.627)$	0.046 ($\mathrm{Cl}=+/-0.543 ; \mathrm{p}=0.857)$	0.381	-10.99\%	-6.81\%
Loss Cost	2016.1	$-0.117(\mathrm{Cl}=+/-1.219 ; \mathrm{p}=0.837)$	0.047 ($\mathrm{Cl}=+/-1.253 ; \mathrm{p}=0.936$)	0.298	-11.04\%	-6.81\%
Loss Cost	2016.2	$-1.377(\mathrm{Cl}=+/-6.146 ; \mathrm{p}=0.628)$	1.313 ($\mathrm{Cl}=+/-6.181 ; \mathrm{p}=0.646)$	0.243	-74.78\%	-6.26\%
Severity	2011.1	$0.012(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.086)$	$0.009(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.450)$	0.604	+1.25\%	+2.15\%
Severity	2011.2	$0.008(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.310)$	$0.014(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.254)$	0.568	+0.80\%	+2.27\%
Severity	2012.1	$0.002(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.808)$	$0.022(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.114)$	0.543	+0.21\%	+2.42\%
Severity	2012.2	$-0.002(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.865)$	0.026 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.089)$	0.523	-0.18\%	+2.50\%
Severity	2013.1	$0.005(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.670)$	0.018 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.284$)	0.551	+0.52\%	+2.37\%
Severity	2013.2	$0.005(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.757)$	0.019 ($\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.354$)	0.526	+0.48\%	+2.38\%
Severity	2014.1	$-0.005(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.818)$	0.029 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.241)$	0.493	-0.45\%	+2.49\%
Severity	2014.2	$-0.018(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.488)$	0.044 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.167)$	0.474	-1.83\%	+2.61\%
Severity	2015.1	$-0.032(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.421)$	0.058 ($\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.195)$	0.462	-3.13\%	+2.69\%
Severity	2015.2	$-0.118(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.062)$	0.148 ($\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.033)$	0.541	-11.17\%	+3.02\%
Severity	2016.1	$-0.278(\mathrm{Cl}=+/-0.277 ; \mathrm{p}=0.049)$	0.310 ($\mathrm{Cl}=+/-0.284 ; \mathrm{p}=0.035)$	0.606	-24.24\%	+3.32\%
Severity	2016.2	-1.035 ($\mathrm{Cl}=+/-1.299 ; \mathrm{p}=0.106)$	$1.071(\mathrm{Cl}=+/-1.307 ; \mathrm{p}=0.098)$	0.660	-64.48\%	+3.69\%
Frequency	2011.1	$0.023(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.267)$	$-0.122(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.002)$	0.621	+2.33\%	-9.46\%
Frequency	2011.2	$0.028(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.252)$	$-0.128(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.003)$	0.617	+2.79\%	-9.57\%
Frequency	2012.1	$0.037(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.183)$	$-0.140(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.003)$	0.617	+3.81\%	-9.78\%
Frequency	2012.2	$0.030(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.361)$	$-0.132(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.011)$	0.619	+3.07\%	-9.65\%
Frequency	2013.1	0.029 ($\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.466$)	$-0.131(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.027)$	0.614	+2.99\%	-9.63\%
Frequency	2013.2	$0.016(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.746)$	$-0.116(\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.090)$	0.615	+1.64\%	-9.46\%
Frequency	2014.1	0.040 ($\mathrm{Cl}=+/-0.135 ; \mathrm{p}=0.537)$	$-0.142(\mathrm{Cl}=+/-0.167 ; \mathrm{p}=0.089)$	0.600	+4.08\%	-9.71\%
Frequency	2014.2	0.028 ($\mathrm{Cl}=+/-0.186 ; \mathrm{p}=0.748)$	$-0.130(\mathrm{Cl}=+/-0.218 ; \mathrm{p}=0.224)$	0.592	+2.88\%	-9.62\%
Frequency	2015.1	$0.035(\mathrm{Cl}=+/-0.279 ; \mathrm{p}=0.792)$	$-0.136(\mathrm{Cl}=+/-0.312 ; \mathrm{p}=0.362)$	0.571	+3.54\%	-9.65\%
Frequency	2015.2	$0.002(\mathrm{Cl}=+/-0.483 ; \mathrm{p}=0.993)$	$-0.102(\mathrm{Cl}=+/-0.516 ; \mathrm{p}=0.673)$	0.551	+0.20\%	-9.54\%
Frequency	2016.1	$0.161(\mathrm{Cl}=+/-1.151 ; \mathrm{p}=0.764)$	$-0.264(\mathrm{Cl}=+/-1.183 ; \mathrm{p}=0.633)$	0.504	+17.42\%	-9.80\%
Frequency	2016.2	$-0.342(\mathrm{Cl}=+/-5.852 ; \mathrm{p}=0.899)$	$0.242(\mathrm{Cl}=+/-5.886 ; \mathrm{p}=0.929)$	0.466	-28.99\%	-9.59\%

AB Total DI

Coverage $=A B$ Total DI
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, phase_in_scalar, phase_in_trend

Fit	Start Date	Time	Phase in Scalar	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.047 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.105$)	-0.094 ($\mathrm{Cl}=+/-0.296 ; \mathrm{p}=0.514$)	$-0.113(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.006)$	0.404	+4.78\%	-6.38\%
Loss Cost	2011.2	0.049 ($\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.145$)	$-0.099(\mathrm{Cl}=+/-0.312 ; \mathrm{p}=0.513)$	$-0.115(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.010$)	0.401	+5.04\%	-6.36\%
Loss Cost	2012.1	0.058 ($\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.151$)	$-0.115(\mathrm{Cl}=+/-0.329 ; \mathrm{p}=0.471)$	$-0.123(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.014)$	0.402	+5.96\%	-6.33\%
Loss Cost	2012.2	0.047 ($\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.333$)	$-0.097(\mathrm{Cl}=+/-0.349 ; \mathrm{p}=0.566)$	$-0.112(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.046)$	0.400	+4.77\%	-6.37\%
Loss Cost	2013.1	$0.061(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.310)$	$-0.118(\mathrm{Cl}=+/-0.373 ; \mathrm{p}=0.514)$	$-0.126(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.059)$	0.395	+6.29\%	-6.32\%
Loss Cost	2013.2	0.049 ($\mathrm{Cl}=+/-0.160 ; \mathrm{p}=0.521$)	$-0.103(\mathrm{Cl}=+/-0.405 ; \mathrm{p}=0.597)$	$-0.115(\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.158)$	0.391	+5.04\%	-6.36\%
Loss Cost	2014.1	$0.084(\mathrm{Cl}=+/-0.214 ; \mathrm{p}=0.413)$	$-0.140(\mathrm{Cl}=+/-0.442 ; \mathrm{p}=0.508)$	$-0.149(\mathrm{Cl}=+/-0.216 ; \mathrm{p}=0.161)$	0.379	+8.76\%	-6.27\%
Loss Cost	2014.2	$0.067(\mathrm{Cl}=+/-0.307 ; \mathrm{p}=0.645)$	$-0.125(\mathrm{Cl}=+/-0.498 ; \mathrm{p}=0.597)$	$-0.132(\mathrm{Cl}=+/-0.305 ; \mathrm{p}=0.367)$	0.370	+6.93\%	-6.30\%
Loss Cost	2015.1	$0.097(\mathrm{Cl}=+/-0.485 ; \mathrm{p}=0.672)$	$-0.146(\mathrm{Cl}=+/-0.581 ; \mathrm{p}=0.595)$	$-0.161(\mathrm{Cl}=+/-0.480 ; \mathrm{p}=0.478)$	0.343	+10.15\%	-6.26\%
Loss Cost	2015.2	$-0.039(\mathrm{Cl}=+/-0.911 ; \mathrm{p}=0.927)$	$-0.076(\mathrm{Cl}=+/-0.722 ; \mathrm{p}=0.821)$	$-0.027(\mathrm{Cl}=+/-0.900 ; \mathrm{p}=0.948)$	0.328	-3.81\%	-6.40\%
Loss Cost	2016.1	0.255 ($\mathrm{Cl}=+/-2.797 ; \mathrm{p}=0.843$)	$-0.173(\mathrm{Cl}=+/-1.154 ; \mathrm{p}=0.745)$	-0.319 ($\mathrm{Cl}=+/-2.777 ; \mathrm{p}=0.803$)	0.236	+29.05\%	-6.22\%
Loss Cost	2016.2	$-4.057(\mathrm{Cl}=+/-24.378 ; \mathrm{p}=0.715)$	$0.381(\mathrm{Cl}=+/-3.342 ; \mathrm{p}=0.802)$	3.987 ($\mathrm{Cl}=+/-24.346 ; \mathrm{p}=0.720$)	0.165	-98.27\%	-6.73\%
Severity	2011.1	$0.027(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001)$	$-0.123(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.003)$	0.010 ($\mathrm{Cl}=+/-0.020 ; p=0.302$)	0.733	+2.75\%	+3.79\%
Severity	2011.2	$0.024(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.009)$	$-0.117(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.006)$	$0.013(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.226)$	0.695	+2.44\%	+3.77\%
Severity	2012.1	0.019 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.062$)	$-0.109(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.013$)	$0.017(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.145)$	0.661	+1.96\%	+3.75\%
Severity	2012.2	0.018 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.144)$	$-0.107(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.021)$	$0.019(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.179)$	0.634	+1.84\%	+3.74\%
Severity	2013.1	$0.034(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.018)$	$-0.130(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.004)$	$0.003(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.833)$	0.716	+3.50\%	+3.81\%
Severity	2013.2	$0.044(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.017)$	$-0.142(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.004)$	$-0.006(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.724)$	0.717	+4.47\%	+3.84\%
Severity	2014.1	0.045 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.058$)	$-0.143(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.007$)	$-0.007(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.740)$	0.683	+4.62\%	+3.84\%
Severity	2014.2	$0.048(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.146)$	$-0.146(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.013)$	$-0.011(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.741)$	0.654	+4.95\%	+3.85\%
Severity	2015.1	$0.074(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.152)$	$-0.164(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.015)$	-0.035 ($\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.471$)	0.652	+7.64\%	+3.89\%
Severity	2015.2	$0.021(\mathrm{Cl}=+/-0.194 ; \mathrm{p}=0.812)$	$-0.137(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.075)$	$0.016(\mathrm{Cl}=+/-0.191 ; \mathrm{p}=0.856)$	0.630	+2.17\%	+3.83\%
Severity	2016.1	$0.008(\mathrm{Cl}=+/-0.596 ; \mathrm{p}=0.976)$	$-0.133(\mathrm{Cl}=+/-0.246 ; \mathrm{p}=0.257)$	$0.029(\mathrm{Cl}=+/-0.592 ; \mathrm{p}=0.915)$	0.621	+0.83\%	+3.82\%
Severity	2016.2	$-1.128(\mathrm{Cl}=+/-5.172 ; \mathrm{p}=0.633)$	$0.013(\mathrm{Cl}=+/-0.709 ; \mathrm{p}=0.967)$	$1.165(\mathrm{Cl}=+/-5.165 ; \mathrm{p}=0.622)$	0.622	-67.65\%	+3.67\%
Frequency	2011.1	0.020 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.466$)	$0.029(\mathrm{Cl}=+/-0.283 ; \mathrm{p}=0.832)$	$-0.123(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.002)$	0.602	+1.97\%	-9.80\%
Frequency	2011.2	0.025 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.426$)	$0.018(\mathrm{Cl}=+/-0.297 ; \mathrm{p}=0.901)$	$-0.128(\mathrm{Cl}=+/-0.080 ; p=0.003)$	0.597	+2.54\%	-9.77\%
Frequency	2012.1	0.038 ($\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.305$)	$-0.007(\mathrm{Cl}=+/-0.311 ; \mathrm{p}=0.965)$	$-0.141(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.004)$	0.596	+3.92\%	-9.71\%
Frequency	2012.2	$0.028(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.529)$	$0.010(\mathrm{Cl}=+/-0.330 ; \mathrm{p}=0.950)$	$-0.131(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.017)$	0.597	+2.88\%	-9.75\%
Frequency	2013.1	$0.027(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.637)$	$0.013(\mathrm{Cl}=+/-0.355 ; \mathrm{p}=0.941)$	$-0.129(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.044)$	0.590	+2.70\%	-9.76\%
Frequency	2013.2	0.005 ($\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.939)$	$0.039(\mathrm{Cl}=+/-0.383 ; \mathrm{p}=0.830)$	$-0.109(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.157)$	0.591	+0.55\%	-9.82\%
Frequency	2014.1	$0.039(\mathrm{Cl}=+/-0.202 ; \mathrm{p}=0.686)$	$0.003(\mathrm{Cl}=+/-0.418 ; \mathrm{p}=0.986)$	$-0.141(\mathrm{Cl}=+/-0.204 ; \mathrm{p}=0.159)$	0.571	+3.96\%	-9.74\%
Frequency	2014.2	0.019 ($\mathrm{Cl}=+/-0.290 ; \mathrm{p}=0.891$)	$0.021(\mathrm{Cl}=+/-0.470 ; p=0.924)$	$-0.122(\mathrm{Cl}=+/-0.288 ; \mathrm{p}=0.379)$	0.561	+1.89\%	-9.78\%
Frequency	2015.1	$0.023(\mathrm{Cl}=+/-0.459 ; \mathrm{p}=0.915)$	$0.018(\mathrm{Cl}=+/-0.549 ; \mathrm{p}=0.944)$	$-0.126(\mathrm{Cl}=+/-0.453 ; \mathrm{p}=0.557)$	0.536	+2.33\%	-9.77\%
Frequency	2015.2	-0.060 ($\mathrm{Cl}=+/-0.865 ; \mathrm{p}=0.881$)	$0.061(\mathrm{Cl}=+/-0.686 ; \mathrm{p}=0.848)$	$-0.043(\mathrm{Cl}=+/-0.855 ; \mathrm{p}=0.913$)	0.511	-5.85\%	-9.86\%
Frequency	2016.1	0.247 ($\mathrm{Cl}=+/-2.654 ; \mathrm{p}=0.840)$	-0.040 ($\mathrm{Cl}=+/-1.095 ; \mathrm{p}=0.937$)	-0.349 ($\mathrm{Cl}=+/-2.635 ; \mathrm{p}=0.774$)	0.455	+27.99\%	-9.67\%
Frequency	2016.2	$-2.928(\mathrm{Cl}=+/-23.213 ; \mathrm{p}=0.782)$	0.368 ($\mathrm{Cl}=+/-3.182 ; \mathrm{p}=0.799$)	2.823 ($\mathrm{Cl}=+/-23.182 ; \mathrm{p}=0.789$)	0.411	-94.65\%	-10.04\%

AB Total DI

Coverage $=A B$ Total DI
End Trend Period $=2022.2$
Excluded Points $=$ NA
Parameters Included: time, seasonality, mobility

						Implied Trend
Fit	Start Date	Time	Seasonality	Mobility	Adjusted R^2	Rate
Loss Cost	2011.1	0.002 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.677$)	0.097 ($\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.002$)	0.014 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.887	+0.21\%
Loss Cost	2011.2	$0.001(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.844)$	0.095 ($\mathrm{Cl}=+/-0.060 ; p=0.004)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.888	+0.10\%
Loss Cost	2012.1	$-0.002(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.683)$	$0.106(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.002)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.900	-0.23\%
Loss Cost	2012.2	$-0.006(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.236)$	0.095 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.002)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.924	-0.64\%
Loss Cost	2013.1	$-0.010(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.091)$	$0.105(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.001)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.932	-0.99\%
Loss Cost	2013.2	$-0.014(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.026)$	$0.097(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.001)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.945	-1.34\%
Loss Cost	2014.1	$-0.016(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.016)$	$0.105(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.001)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.947	-1.62\%
Loss Cost	2014.2	$-0.020(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.006)$	0.097 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.002$)	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.956	-1.96\%
Loss Cost	2015.1	$-0.026(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.001)$	$0.111(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.967	-2.52\%
Loss Cost	2015.2	$-0.028(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.001)$	$0.107(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.001)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.968	-2.72\%
Loss Cost	2016.1	$-0.025(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.007)$	$0.102(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.002)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.964	-2.51\%
Loss Cost	2016.2	$-0.020(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.015)$	0.114 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.001$)	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.975	-1.97\%
Severity	2011.1	0.018 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.006(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.792)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.628)$	0.580	+1.84\%
Severity	2011.2	0.017 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.889)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.677)$	0.520	+1.75\%
Severity	2012.1	0.016 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.002)$	$0.007(\mathrm{Cl}=+/-0.047 ; p=0.753)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.786)$	0.455	+1.62\%
Severity	2012.2	0.016 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.003$)	$0.008(\mathrm{Cl}=+/-0.050 ; p=0.746)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.784)$	0.412	+1.64\%
Severity	2013.1	0.020 ($\mathrm{Cl}=+/-0.010 ; p=0.001)$	$-0.003(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.900)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.543)$	0.500	+2.00\%
Severity	2013.2	$0.021(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.001)$	$-0.001(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.983)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.526)$	0.481	+2.10\%
Severity	2014.1	$0.021(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.005)$	$0.000(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.994)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.554)$	0.419	+2.08\%
Severity	2014.2	$0.021(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.008)$	$0.001(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.981)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.563)$	0.366	+2.12\%
Severity	2015.1	$0.023(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.011)$	$-0.005(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.862)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.497)$	0.359	+2.35\%
Severity	2015.2	$0.023(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.021)$	$-0.005(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.872)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.517)$	0.286	+2.36\%
Severity	2016.1	$0.030(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.009)$	$-0.020(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.535)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.350)$	0.403	+3.02\%
Severity	2016.2	$0.035(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.003)$	$-0.007(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.803)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.312)$	0.553	+3.61\%
Frequency	2011.1	$-0.016(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.011)$	0.092 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.011$)	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.885	-1.60\%
Frequency	2011.2	$-0.016(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.018)$	$0.091(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.015)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.882	-1.61\%
Frequency	2012.1	-0.018 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.016$)	$0.098(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.013)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.883	-1.82\%
Frequency	2012.2	$-0.023(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.004)$	$0.087(\mathrm{Cl}=+/-0.072 ; p=0.021)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.902	-2.25\%
Frequency	2013.1	$-0.030(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.108(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.003)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.931	-2.93\%
Frequency	2013.2	$-0.034(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.097(\mathrm{Cl}=+/-0.060 ; p=0.003)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.946	-3.37\%
Frequency	2014.1	$-0.037(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.105(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.003)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.946	-3.63\%
Frequency	2014.2	-0.041 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.096(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.005)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.953	-4.00\%
Frequency	2015.1	-0.049 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.117(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.970	-4.77\%
Frequency	2015.2	-0.051 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.112(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.001)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.971	-4.96\%
Frequency	2016.1	-0.055 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.122(\mathrm{Cl}=+/-0.057 ; p=0.001)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.971	-5.37\%
Frequency	2016.2	-0.055 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.122 ($\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.002)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.969	-5.39\%

AB Total DI

Coverage $=A B$ Total $D I$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_scalar, mobility

Fit	Start Date	Time	Seasonality	Phase in Scalar	Mobility	Adjusted	Implied Trend Rate
Loss Cost	2011.1	0.019 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.033$)	$0.094(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.001$)	$-0.134(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.026$)	0.014 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.909	+1.95\%
Loss Cost	2011.2	$0.019(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.056)$	$0.093(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.002)$	$-0.132(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.036)$	$0.014(\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.908	+1.90\%
Loss Cost	2012.1	$0.014(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.166)$	$0.101(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.001)$	$-0.117(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.065)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.914	+1.44\%
Loss Cost	2012.2	$0.008(\mathrm{Cl}=+/-0.020 ; p=0.420)$	$0.092(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.002)$	$-0.097(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.095)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.932	+0.78\%
Loss Cost	2013.1	$0.003(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.757)$	$0.102(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.001)$	$-0.085(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.137)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.938	+0.31\%
Loss Cost	2013.2	$-0.001(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.883)$	$0.094(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.001)$	$-0.077(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.146)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.950	-0.14\%
Loss Cost	2014.1	$-0.005(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.651)$	$0.101(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.001$)	$-0.074(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.163)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.951	-0.45\%
Loss Cost	2014.2	$-0.007(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.435)$	0.093 ($\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.002)$	$-0.080(\mathrm{Cl}=+/-0.100 ; \mathrm{p}=0.108)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.962	-0.73\%
Loss Cost	2015.1	$-0.012(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.136)$	$0.109(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	$-0.092(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.027$)	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.977	-1.17\%
Loss Cost	2015.2	$-0.012(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.080)$	0.100 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000$)	$-0.114(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.006)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.984	-1.22\%
Loss Cost	2016.1	$-0.013(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.082)$	$0.104(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	$-0.127(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.008)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.983	-1.25\%
Loss Cost	2016.2	$-0.013(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.102)$	$0.105(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.001)$	$-0.116(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.104)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.981	-1.29\%
Severity	2011.1	$0.034(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.900)$	$-0.123(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.005)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.432)$	0.714	+3.46\%
Severity	2011.2	$0.034(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.923)$	$-0.122(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.007)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.456)$	0.664	+3.42\%
Severity	2012.1	$0.033(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.882)$	$-0.120(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.012)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.506)$	0.608	+3.36\%
Severity	2012.2	$0.035(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.804)$	$-0.125(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.012)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.474)$	0.585	+3.52\%
Severity	2013.1	$0.042(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$-0.009(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.598)$	$-0.143(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.001)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.148)$	0.737	+4.26\%
Severity	2013.2	$0.044(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$-0.006(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.742)$	-0.146 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.001$)	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.125)$	0.743	+4.46\%
Severity	2014.1	$0.044(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$-0.007(\mathrm{Cl}=+/-0.040 ; p=0.725)$	$-0.146(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.002)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.140)$	0.711	+4.49\%
Severity	2014.2	$0.044(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$-0.007(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.739)$	-0.146 ($\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.003$)	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.157)$	0.683	+4.49\%
Severity	2015.1	0.045 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$-0.010(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.656)$	$-0.144(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.005)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.156)$	0.672	+4.58\%
Severity	2015.2	$0.044(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$-0.015(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.491)$	$-0.158(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.004)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.153)$	0.672	+4.55\%
Severity	2016.1	$0.045(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.001)$	$-0.018(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.452)$	$-0.148(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.015)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.160)$	0.668	+4.58\%
Severity	2016.2	0.045 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.001$)	$-0.020(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.465)$	$-0.161(\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.089$)	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.182)$	0.657	+4.62\%
Frequency	2011.1	$-0.015(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.208)$	$0.092(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.014)$	$-0.011(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.885)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.879	-1.46\%
Frequency	2011.2	$-0.015(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.245)$	$0.091(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.018)$	$-0.010(\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.897)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.876	-1.48\%
Frequency	2012.1	$-0.019(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.185)$	$0.099(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.016)$	$0.003(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.972)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.876	-1.86\%
Frequency	2012.2	$-0.027(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.062)$	$0.087(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.024)$	$0.028(\mathrm{Cl}=+/-0.164 ; \mathrm{p}=0.724)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.897	-2.64\%
Frequency	2013.1	$-0.039(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.006)$	$0.111(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.003)$	$0.058(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.399)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.930	-3.78\%
Frequency	2013.2	-0.045 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001$)	0.100 ($\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.003$)	$0.069(\mathrm{Cl}=+/-0.127 ; p=0.264)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.947	-4.40\%
Frequency	2014.1	-0.049 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.001$)	$0.108(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.002)$	$0.072(\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.243)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.948	-4.74\%
Frequency	2014.2	$-0.051(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001)$	$0.099(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.004)$	$0.067(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.260)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.955	-5.00\%
Frequency	2015.1	$-0.057(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.118(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.000)$	$0.052(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.286)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.971	-5.50\%
Frequency	2015.2	$-0.057(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.115 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.001$)	$0.044(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.399)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.970	-5.51\%
Frequency	2016.1	$-0.057(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.122(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.001)$	$0.022(\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.712)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.969	-5.57\%
Frequency	2016.2	$-0.058(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001$)	0.126 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.003$)	$0.046(\mathrm{Cl}=+/-0.219 ; \mathrm{p}=0.644)$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.966	-5.65\%

AB Total DI

Coverage $=A B$ Total $D 1$
End Trend Period $=2022$
Excluded Points $=$ NA
Parameters Included: time, seasonality, phase_in_trend, mobility

Fit	Start Date	Time	Seasonality	Phase in Trend	Mobility	Adjusted $\mathrm{R}^{\text {^2 }}$	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	$0.030(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.106 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000$)	$-0.059(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.951	+3.04\%	-2.90\%
Loss Cost	2011.2	$0.034(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.111(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	$-0.065(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.954	+3.43\%	-3.03\%
Loss Cost	2012.1	$0.032(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001)$	0.113 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000$)	$-0.063(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.954	+3.25\%	-3.00\%
Loss Cost	2012.2	$0.026(\mathrm{Cl}=+/-0.020 ; p=0.014)$	$0.107(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$-0.055(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.002)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.957	+2.65\%	-2.84\%
Loss Cost	2013.1	$0.024(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.057$)	$0.109(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	$-0.052(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.006)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.957	+2.39\%	-2.81\%
Loss Cost	2013.2	0.018 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.229)$	0.105 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	$-0.045(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.035)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.958	+1.82\%	-2.70\%
Loss Cost	2014.1	$0.017(\mathrm{Cl}=+/-0.040 ; p=0.366)$	$0.106(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.001)$	$-0.045(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.080)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.956	+1.76\%	-2.70\%
Loss Cost	2014.2	$0.006(\mathrm{Cl}=+/-0.055 ; p=0.807)$	$0.101(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.001)$	$-0.032(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.311)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.956	+0.64\%	-2.57\%
Loss Cost	2015.1	$-0.036(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.310)$	0.112 ($\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.001$)	$0.012(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.764)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.964	-3.50\%	-2.38\%
Loss Cost	2015.2	$-0.115(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.045)$	$0.099(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.001)$	$0.094(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.111)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.973	-10.82\%	-1.99\%
Loss Cost	2016.1	$-0.305(\mathrm{Cl}=+/-0.217 ; \mathrm{p}=0.011)$	$0.111(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	$0.288(\mathrm{Cl}=+/-0.223 ; \mathrm{p}=0.017)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.980	-26.28\%	-1.72\%
Loss Cost	2016.2	$-0.938(\mathrm{Cl}=+/-1.051 ; \mathrm{p}=0.074$)	$0.101(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.001)$	0.925 ($\mathrm{Cl}=+/-1.058 ; \mathrm{p}=0.079$)	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.982	-60.88\%	-1.35\%
Severity	2011.1	0.012 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.106$)	$0.004(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.865$)	0.013 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.318$)	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.404)$	0.581	+1.21\%	+2.55\%
Severity	2011.2	$0.008(\mathrm{Cl}=+/-0.017 ; p=0.356)$	$-0.002(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.929)$	$0.019(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.177)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.358)$	0.543	+0.76\%	+2.72\%
Severity	2012.1	$0.002(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.860)$	$0.004(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.846$)	$0.026(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.084)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.374)$	0.519	+0.16\%	+2.84\%
Severity	2012.2	$-0.002(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.829)$	$0.001(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.982)$	$0.031(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.070)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.356)$	0.494	-0.23\%	+2.95\%
Severity	2013.1	$0.005(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.715$)	$-0.005(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.840)$	$0.024(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.207)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.334)$	0.522	+0.46\%	+2.85\%
Severity	2013.2	$0.004(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.827)$	-0.005 ($\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.828$)	$0.025(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.266)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.348)$	0.493	+0.35\%	+2.88\%
Severity	2014.1	$-0.006(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.786$)	$-0.001(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.969)$	0.035 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.196$)	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.375)$	0.453	-0.55\%	+2.96\%
Severity	2014.2	$-0.021(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.457)$	$-0.007(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.797$)	$0.052(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.139)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.343)$	0.432	-2.07\%	+3.14\%
Severity	2015.1	$-0.033(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.424)$	$-0.004(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.892)$	$0.065(\mathrm{Cl}=+/-0.100 ; \mathrm{p}=0.179)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.373)$	0.411	-3.28\%	+3.20\%
Severity	2015.2	$-0.130(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.053)$	$-0.020(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.467)$	$0.167(\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.026)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.227)$	0.533	-12.23\%	+3.71\%
Severity	2016.1	$-0.276(\mathrm{Cl}=+/-0.296 ; \mathrm{p}=0.064$)	$-0.010(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.714)$	0.315 ($\mathrm{Cl}=+/-0.304 ; \mathrm{p}=0.044$)	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.248)$	0.588	-24.15\%	+3.93\%
Severity	2016.2	$-1.267(\mathrm{Cl}=+/-1.372 ; \mathrm{p}=0.066)$	$-0.027(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.336)$	$1.312(\mathrm{Cl}=+/-1.381 ; \mathrm{p}=0.060)$	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.146)$	0.686	-71.84\%	+4.55\%
Frequency	2011.1	0.018 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.018$)	$0.103(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	$-0.072(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.956	+1.81\%	-5.31\%
Frequency	2011.2	$0.026(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001)$	0.113 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000$)	$-0.084(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.967	+2.66\%	-5.60\%
Frequency	2012.1	0.030 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001$)	$0.109(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	$-0.089(\mathrm{Cl}=+/-0.027 ; p=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.968	+3.09\%	-5.68\%
Frequency	2012.2	0.028 ($\mathrm{Cl}=+/-0.020 ; p=0.008$)	$0.107(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$-0.086(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.968	+2.88\%	-5.63\%
Frequency	2013.1	$0.019(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.094)$	$0.114(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	$-0.076(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.972	+1.92\%	-5.50\%
Frequency	2013.2	$0.014(\mathrm{Cl}=+/-0.029 ; p=0.296)$	$0.111(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	$-0.070(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.002)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.972	+1.46\%	-5.42\%
Frequency	2014.1	$0.023(\mathrm{Cl}=+/-0.037 ; p=0.197)$	0.107 ($\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000$)	$-0.079(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.003)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.972	+2.33\%	-5.49\%
Frequency	2014.2	$0.027(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.268)$	$0.108(\mathrm{Cl}=+/-0.050 ; p=0.000)$	$-0.084(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.011$)	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.971	+2.76\%	-5.54\%
Frequency	2015.1	$-0.002(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.945)$	$0.116(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	$-0.053(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.175)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.973	-0.23\%	-5.41\%
Frequency	2015.2	$0.016(\mathrm{Cl}=+/-0.127 ; p=0.785)$	$0.119(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.001)$	$-0.073(\mathrm{Cl}=+/-0.137 ; \mathrm{p}=0.265)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.972	+1.61\%	-5.50\%
Frequency	2016.1	$-0.029(\mathrm{Cl}=+/-0.305 ; \mathrm{p}=0.837)$	$0.122(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.002)$	$-0.027(\mathrm{Cl}=+/-0.313 ; \mathrm{p}=0.848)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.968	-2.82\%	-5.44\%
Frequency	2016.2	0.329 (Cl $=+/-1.623 ; p=0.653)$	0.128 ($\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.003)$	$-0.387(\mathrm{Cl}=+/-1.634 ; \mathrm{p}=0.600)$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.966	+38.91\%	-5.64\%

AB Total DI

Coverage $=A B$ Total DI
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time, seasonality, phase_in_trend

Fit	Start Date	Time	Seasonality	Phase in Trend	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.034 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.096 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000$)	-0.080 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000$)	0.730	+3.48\%	-4.51\%
Loss Cost	2011.2	$0.039(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.102(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000)$	$-0.088(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	0.732	+3.95\%	-4.81\%
Loss Cost	2012.1	$0.038(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.001)$	$0.103(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.001)$	$-0.087(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.001)$	0.720	+3.90\%	-4.79\%
Loss Cost	2012.2	$0.032(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.011)$	0.096 ($\mathrm{Cl}=+/-0.050 ; p=0.001$)	$-0.078(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.005$)	0.634	+3.26\%	-4.47\%
Loss Cost	2013.1	$0.032(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.037)$	$0.097(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.003)$	$-0.077(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.011)$	0.625	+3.21\%	-4.45\%
Loss Cost	2013.2	$0.026(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.156)$	$0.092(\mathrm{Cl}=+/-0.060 ; p=0.007)$	$-0.069(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.042)$	0.550	+2.62\%	-4.23\%
Loss Cost	2014.1	$0.030(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.217)$	$0.090(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.015$)	$-0.074(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.068)$	0.530	+3.02\%	-4.33\%
Loss Cost	2014.2	$0.018(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.586)$	$0.084(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.035)$	$-0.059(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.230)$	0.475	+1.80\%	-4.05\%
Loss Cost	2015.1	-0.019 ($\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.674$)	$0.096(\mathrm{Cl}=+/-0.080 ; p=0.026)$	$-0.017(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.775$)	0.552	-1.89\%	-3.53\%
Loss Cost	2015.2	$-0.114(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.116)$	0.075 ($\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.048)$	$0.089(\mathrm{Cl}=+/-0.183 ; \mathrm{p}=0.265)$	0.725	-10.78\%	-2.44\%
Loss Cost	2016.1	$-0.292(\mathrm{Cl}=+/-0.325 ; \mathrm{p}=0.067$)	$0.092(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.026)$	$0.277(\mathrm{Cl}=+/-0.350 ; \mathrm{p}=0.093)$	0.723	-25.36\%	-1.57\%
Loss Cost	2016.2	$-1.497(\mathrm{Cl}=+/-0.221 ; \mathrm{p}=0.000)$	$0.062(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$1.501(\mathrm{Cl}=+/-0.225 ; \mathrm{p}=0.000)$	0.996	-77.62\%	+0.40\%
Severity	2011.1	$0.017(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.029)$	$0.002(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.935)$	$-0.015(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.442)$	0.297	+1.76\%	+0.26\%
Severity	2011.2	$0.013(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.127)$	$-0.004(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.860)$	$-0.008(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.702)$	0.146	+1.34\%	+0.55\%
Severity	2012.1	$0.008(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.416)$	$0.003(\mathrm{Cl}=+/-0.049 ; p=0.910)$	$0.001(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.975)$	-0.017	+0.78\%	+0.84\%
Severity	2012.2	$0.004(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.696)$	$-0.001(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.969)$	$0.006(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.809)$	-0.111	+0.45\%	+1.02\%
Severity	2013.1	$0.014(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.289)$	$-0.009(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.698)$	$-0.008(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.756)$	0.025	+1.42\%	+0.65\%
Severity	2013.2	$0.015(\mathrm{Cl}=+/-0.037 ; p=0.387)$	$-0.009(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.741)$	$-0.009(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.767)$	-0.044	+1.50\%	+0.62\%
Severity	2014.1	$0.008(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.705$)	$-0.005(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.861$)	$-0.001(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.986)$	-0.226	+0.85\%	+0.79\%
Severity	2014.2	$-0.005(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.874$)	$-0.012(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.720)$	$0.016(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.721)$	-0.319	-0.49\%	+1.12\%
Severity	2015.1	$-0.010(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.840)$	$-0.010(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.784)$	$0.022(\mathrm{Cl}=+/-0.147 ; \mathrm{p}=0.732)$	-0.396	-0.97\%	+1.19\%
Severity	2015.2	$-0.113(\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.134)$	$-0.032(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.336)$	$0.137(\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.127)$	0.088	-10.70\%	+2.43\%
Severity	2016.1	$-0.236(\mathrm{Cl}=+/-0.406 ; \mathrm{p}=0.182)$	-0.021 ($\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.560$)	0.266 ($\mathrm{Cl}=+/-0.437 ; \mathrm{p}=0.166$)	0.141	-21.04\%	+3.06\%
Severity	2016.2	$-1.621(\mathrm{Cl}=+/-1.140 ; \mathrm{p}=0.020)$	$-0.056(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.052)$	$1.674(\mathrm{Cl}=+/-1.162 ; \mathrm{p}=0.019)$	0.819	-80.24\%	+5.44\%
Frequency	2011.1	$0.017(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.023)$	$0.094(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	$-0.065(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.002)$	0.662	+1.69\%	-4.76\%
Frequency	2011.2	0.025 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.001$)	$0.106(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	$-0.080(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	0.803	+2.58\%	-5.34\%
Frequency	2012.1	$0.031(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.100 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	$-0.088(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	0.832	+3.10\%	-5.58\%
Frequency	2012.2	$0.028(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.004)$	$0.097(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000)$	$-0.084(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	0.800	+2.81\%	-5.44\%
Frequency	2013.1	$0.018(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.041)$	$0.106(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	$-0.069(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.001)$	0.872	+1.77\%	-5.07\%
Frequency	2013.2	$0.011(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.250)$	$0.101(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	$-0.060(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.004)$	0.877	+1.10\%	-4.82\%
Frequency	2014.1	$0.021(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.072)$	0.095 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	$-0.073(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.002)$	0.889	+2.15\%	-5.08\%
Frequency	2014.2	0.023 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.167)$	0.096 ($\mathrm{Cl}=+/-0.036 ; p=0.000)$	$-0.075(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.010$)	0.882	+2.30\%	-5.11\%
Frequency	2015.1	$-0.009(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.511$)	$0.106(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$-0.038(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.070)$	0.956	-0.93\%	-4.66\%
Frequency	2015.2	$-0.001(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.974)$	$0.108(\mathrm{Cl}=+/-0.030 ; p=0.000)$	$-0.048(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.158)$	0.955	-0.08\%	-4.76\%
Frequency	2016.1	$-0.056(\mathrm{Cl}=+/-0.150 ; \mathrm{p}=0.355)$	0.113 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.001$)	0.010 ($\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.868)$	0.951	-5.47\%	-4.49\%
Frequency	2016.2	$0.124(\mathrm{Cl}=+/-0.988 ; \mathrm{p}=0.715)$	$0.117(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.005)$	$-0.173(\mathrm{Cl}=+/-1.006 ; \mathrm{p}=0.622)$	0.949	+13.25\%	-4.78\%

AB Total DI

Coverage $=A B$ Total $D 1$
End Trend Period $=2021$
Excluded Points $=$ NA
Excluded Points = NA

Fit	Start Date	Time	Seasonality	Phase in Scalar	Phase in Trend	Mobility	Adjusted $\mathrm{R}^{\wedge} \mathbf{2}$	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2011.1	0.045 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	$0.104(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	$-0.137(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.001)$	$-0.048(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$. 013 ($\mathrm{C}=+/-0.002 ; \mathrm{p}=0.000$)	0.975	+4.56\%	-0.36\%
Loss Cost	2011.2	$0.053(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.111(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$-0.154(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.000)$	$-0.056(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.984	+5.41\%	-0.33\%
Loss Cost	2012.1	0.055 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	0.110 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000$)	$-0.157(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.000)$	$-0.058(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.984	+5.61\%	-0.31\%
Loss Cost	2012.2	$0.052(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.108(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	$-0.153(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.000)$	$-0.055(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.984	+5.33\%	-0.32\%
Loss Cost	2013.1	$0.056(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.106(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	$-0.159(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.000)$	$-0.059(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.984	+5.75\%	-0.28\%
Loss Cost	2013.2	0.058 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.001$)	$0.107(\mathrm{Cl}=+/-0.030 ; p=0.000)$	$-0.162(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.000)$	$-0.061(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.001)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.984	+6.00\%	-0.28\%
Loss Cost	2014.1	0.075 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.001$)	$0.101(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000)$	$-0.180(\mathrm{Cl}=+1-0.074 ; \mathrm{p}=0.000)$	$-0.076(\mathrm{Cl}=+1-0.036 ; \mathrm{p}=0.001)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.986	+7.75\%	-0.18\%
Loss Cost	2014.2	$0.087(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.002$)	0.104 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000$)	$-0.191(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.000)$	$-0.088(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.003)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.987	+9.04\%	-0.15\%
Loss Cost	2015.1	$0.069(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.068$)	0.107 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000$)	$-0.178(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.002)$	$-0.072(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.059)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.986	+7.19\%	-0.21\%
Loss Cost	2015.2	$0.037(\mathrm{Cl}=+/-0.144 ; \mathrm{p}=0.573$)	0.104 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000$)	$-0.161(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.013)$	$-0.039(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.543)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.986	+3.74\%	-0.26\%
Loss Cost	2016.1	-0.048 ($\mathrm{Cl}=+/-0.468 ; \mathrm{p}=0.816$)	$0.107(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.001)$	$-0.133(\mathrm{Cl}=+/-0.195 ; \mathrm{p}=0.151)$	$0.044(\mathrm{Cl}=+/-0.462 ; \mathrm{p}=0.828)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.984	-4.67\%	-0.36\%
Loss Cost	2016.2	$-0.797(\mathrm{Cl}=+/-4.393 ; \mathrm{p}=0.673)$	0.103 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.003$)	$-0.038(\mathrm{Cl}=+1-0.596 ; \mathrm{p}=0.882)$	$0.792(\mathrm{Cl}=+/-4.385 ; \mathrm{p}=0.674)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.982	-54.92\%	-0.48\%
Severity	2011.1	0.027 (Cl $=+/-0.014 ; \mathrm{p}=0.001$)	$-0.002(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.893)$	$-0.099(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.016)$	$0.001(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.957)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.906$)	0.657	+2.70\%	+2.77\%
Severity	2011.2	0.023 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.008$)	$-0.005(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.752)$	$-0.093(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.027)$	$0.004(\mathrm{Cl}=+/-0.027$; $\mathrm{p}=0.762$)	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.923$)	0.589	+2.36\%	+2.76\%
Severity	2012.1	$0.019(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.055)$	$-0.002(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.926)$	$-0.084(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.049)$	$0.008(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.558)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.887$)	0.514	+1.89\%	+2.70\%
Severity	2012.2	$0.017(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.142)$	$-0.003(\mathrm{Cl}=+1-0.037 ; \mathrm{p}=0.884)$	$-0.081(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.071)$	$0.010(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.533)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.896)$	0.458	+1.73\%	+2.70\%
Severity	2013.1	$0.034(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.010$)	$-0.012(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.449)$	$-0.106(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.011)$	$-0.006(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.683)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.984$)	0.639	+3.44\%	+2.85\%
Severity	2013.2	$0.041(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.012)$	$-0.008(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.600)$	$-0.116(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.010)$	$-0.013(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.429)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.965$)	0.633	+4.23\%	+2.87\%
Severity	2014.1	$0.044(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.042)$	$-0.009(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.593)$	$-0.119(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.016)$	$-0.015(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.463)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.976$)	0.565	+4.48\%	+2.88\%
Severity	2014.2	$0.043(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.147)$	$-0.009(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.617)$	$-0.118(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.031)$	$-0.015(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.610)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.978$)	0.500	+4.42\%	+2.88\%
Severity	2015.1	$0.072(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.122)$	$-0.014(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.481)$	$-0.139(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.027)$	$-0.042(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.335)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.967$)	0.507	+7.45\%	+2.98\%
Severity	2015.2	$-0.005(\mathrm{Cl}=+/-0.170 ; \mathrm{p}=0.950)$	$-0.021(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.309)$	$-0.099(\mathrm{Cl}=+/-0.139 ; \mathrm{p}=0.138)$	$0.033(\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.661)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.945$)	0.509	-0.48\%	+2.88\%
Severity	2016.1	$0.023(\mathrm{Cl}=+/-0.559 ; \mathrm{p}=0.925$)	$-0.022(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.355)$	$-0.108(\mathrm{Cl}=+1 /-0.233 ; \mathrm{p}=0.308)$	0.006 ($\mathrm{Cl}=+/-0.552 ; \mathrm{p}=0.981$)	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.935$)	0.483	+2.32\%	+2.91\%
Severity	2016.2	$-2.960(\mathrm{Cl}=+/-4.398 ; \mathrm{p}=0.151)$	$-0.037(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.141)$	$0.272(\mathrm{Cl}=+/-0.596 ; \mathrm{p}=0.308)$	$2.984(\mathrm{Cl}=+/-4.390 ; \mathrm{p}=0.147)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.929)$	0.619	-94.82\%	+2.43\%
Frequency	2011.1	0.018 (Cl $=+/-0.016 ; \mathrm{p}=0.032)$	$0.106(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$-0.038(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.391)$	$-0.049(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.003)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.967	+1.81\%	-3.05\%
Frequency	2011.2	$0.029(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001)$	0.116 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000$)	$-0.061(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.097)$	$-0.060(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.980	+2.99\%	-3.01\%
Frequency	2012.1	$0.036(\mathrm{Cl}=+/-0.017$; $\mathrm{p}=0.000$)	$0.111(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000)$	$-0.073(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.047)$	$-0.066(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.982	+3.66\%	-2.93\%
Frequency	2012.2	$0.035(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.003)$	0.110 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000$)	$-0.072(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.067)$	$-0.065(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.982	+3.54\%	-2.94\%
Frequency	2013.1	$0.022(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.051$)	0.117 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000$)	$-0.052(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.138)$	$-0.053(\mathrm{Cl}=+/-0.027 ; p=0.001)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.986	+2.23\%	-3.04\%
Frequency	2013.2	$0.017(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.222)$	0.115 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000$)	$-0.046(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.219)$	$-0.048(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.008)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.987	+1.70\%	-3.06\%
Frequency	2014.1	$0.031(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.090$)	0.110 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000$)	$-0.061(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.120)$	$-0.061(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.005$)	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.987	+3.12\%	-2.98\%
Frequency	2014.2	$0.043(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.092)$	0.113 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	$-0.072(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.097)$	$-0.073(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.012)$	$0.013(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.988	+4.42\%	-2.95\%
Frequency	2015.1	$-0.002(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.939)$	$0.121(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	$-0.039(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.335)$	$-0.029(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.369)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.991	-0.24\%	-3.10\%
Frequency	2015.2	$0.041(\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.483)$	0.125 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	$-0.062(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.213)$	$-0.072(\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.230)$	0.013 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.991	+4.23\%	-3.05\%
Frequency	2016.1	$-0.071(\mathrm{Cl}=+/-0.415 ; \mathrm{p}=0.699)$	$0.129(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	$-0.025(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.746)$	$0.038(\mathrm{Cl}=+/-0.410 ; \mathrm{p}=0.831)$	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.990	-6.83\%	-3.18\%
Frequency	2016.2	2.163 ($\mathrm{C}=+/-3.251 ; \mathrm{p}=0.155$)	0.140 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000$)	$-0.309(\mathrm{Cl}=+/-0.441 ; \mathrm{p}=0.137)$	$-2.192(\mathrm{Cl}=+/-3.245 ; \mathrm{p}=0.149)$	0.012 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.992	+769.91\%	-2.84\%

AB Funeral \& DB

Coverage $=A B$ Funeral \& DB
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time

				Implied Trend
Fit	Start Date	Time	Adjusted R^2	Rate
Loss Cost	2011.1	-0.030 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.003$)	0.301	-3.00\%
Loss Cost	2011.2	$-0.036(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.001)$	0.370	-3.50\%
Loss Cost	2012.1	$-0.034(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.004)$	0.319	-3.37\%
Loss Cost	2012.2	$-0.036(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.005)$	0.314	-3.56\%
Loss Cost	2013.1	$-0.035(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.013)$	0.259	-3.42\%
Loss Cost	2013.2	-0.040 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.008)$	0.306	-3.95\%
Loss Cost	2014.1	$-0.039(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.021)$	0.248	-3.79\%
Loss Cost	2014.2	$-0.048(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.008)$	0.338	-4.68\%
Loss Cost	2015.1	$-0.044(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.026)$	0.256	-4.32\%
Loss Cost	2015.2	$-0.054(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.016)$	0.324	-5.23\%
Loss Cost	2016.1	$-0.057(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.025)$	0.298	-5.51\%
Loss Cost	2016.2	$-0.072(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.011)$	0.408	-6.97\%
Severity	2011.1	$0.005(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.078)$	0.095	+0.47\%
Severity	2011.2	$0.004(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.122)$	0.068	+0.44\%
Severity	2012.1	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.103)$	0.084	+0.51\%
Severity	2012.2	0.006 ($\mathrm{Cl}=+/-0.007 ; ~ p=0.082)$	0.106	+0.60\%
Severity	2013.1	0.005 ($\mathrm{Cl}=+/-0.007 ; ~ p=0.171$)	0.052	+0.50\%
Severity	2013.2	0.006 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.159)$	0.061	+0.57\%
Severity	2014.1	0.005 ($\mathrm{Cl}=+/-0.009 ; p=0.247)$	0.026	+0.52\%
Severity	2014.2	$0.005(\mathrm{Cl}=+/-0.010 ; p=0.295)$	0.011	+0.53\%
Severity	2015.1	$0.006(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.295)$	0.012	+0.60\%
Severity	2015.2	$0.007(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.260)$	0.027	+0.74\%
Severity	2016.1	$0.008(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.277)$	0.022	+0.82\%
Severity	2016.2	0.003 (CI = +/-0.017; p = 0.731)	-0.079	+0.27\%
Frequency	2011.1	$-0.035(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.002)$	0.343	-3.45\%
Frequency	2011.2	-0.040 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.001)$	0.397	-3.92\%
Frequency	2012.1	$-0.039(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.002)$	0.354	-3.86\%
Frequency	2012.2	-0.042 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.002)$	0.358	-4.14\%
Frequency	2013.1	-0.040 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.008)$	0.295	-3.90\%
Frequency	2013.2	-0.046 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.005$)	0.345	-4.50\%
Frequency	2014.1	$-0.044(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.014)$	0.281	-4.29\%
Frequency	2014.2	$-0.053(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.006)$	0.362	-5.18\%
Frequency	2015.1	$-0.050(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.019)$	0.287	-4.89\%
Frequency	2015.2	$-0.061(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.010)$	0.363	-5.92\%
Frequency	2016.1	$-0.065(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.017)$	0.340	-6.28\%
Frequency	2016.2	-0.075 (CI = +/-0.058; $\mathrm{p}=0.016$)	0.369	-7.22\%

AB Funeral \& DB

Coverage $=A B$ Funeral \& $D B$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality

					Implied Trend
Fit	Start Date	Time	Seasonality	Adjusted R^2	Rate
Loss Cost	2011.1	-0.033 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.252 ($\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.000$)	0.781	-3.26\%
Loss Cost	2011.2	-0.036 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.242 ($\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.000)$	0.798	-3.50\%
Loss Cost	2012.1	$-0.037(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.249 ($\mathrm{Cl}=+/-0.077 ; p=0.000)$	0.788	-3.67\%
Loss Cost	2012.2	$-0.036(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.253(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.000)$	0.786	-3.56\%
Loss Cost	2013.1	$-0.039(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.261(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.000)$	0.778	-3.79\%
Loss Cost	2013.2	-0.040 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.256 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.000$)	0.781	-3.95\%
Loss Cost	2014.1	$-0.044(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.266 ($\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.000$)	0.775	-4.26\%
Loss Cost	2014.2	-0.048 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$0.254(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.000)$	0.796	-4.68\%
Loss Cost	2015.1	$-0.050(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.261(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.000)$	0.771	-4.90\%
Loss Cost	2015.2	$-0.054(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000$)	$0.252(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.000)$	0.779	-5.23\%
Loss Cost	2016.1	$-0.065(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000$)	0.281 ($\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.000)$	0.853	-6.33\%
Loss Cost	2016.2	-0.072 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000$)	0.266 ($\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.000$)	0.878	-6.97\%
Severity	2011.1	$0.005(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.068)$	$-0.018(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.308)$	0.099	+0.49\%
Severity	2011.2	$0.004(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.121)$	$-0.020(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.287)$	0.076	+0.44\%
Severity	2012.1	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.083)$	$-0.024(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.223)$	0.110	+0.54\%
Severity	2012.2	$0.006(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.081)$	-0.022 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.283)$	0.117	+0.60\%
Severity	2013.1	$0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.152)$	$-0.019(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.356)$	0.047	+0.53\%
Severity	2013.2	$0.006(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.164)$	$-0.018(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.412)$	0.044	+0.57\%
Severity	2014.1	$0.006(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.229)$	$-0.018(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.455)$	0.000	+0.56\%
Severity	2014.2	$0.005(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.303)$	$-0.018(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.465)$	-0.019	+0.53\%
Severity	2015.1	$0.007(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.266)$	$-0.022(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.416)$	-0.009	+0.65\%
Severity	2015.2	$0.007(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.270)$	-0.020 ($\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.491$)	-0.011	+0.74\%
Severity	2016.1	$0.009(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.252)$	$-0.023(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.446)$	-0.009	+0.89\%
Severity	2016.2	$0.003(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.722)$	$-0.037(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.204)$	-0.001	+0.27\%
Frequency	2011.1	$-0.038(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.270 ($\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.000$)	0.810	-3.72\%
Frequency	2011.2	-0.040 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.262 (CI = +/-0.077; p = 0.000)	0.820	-3.92\%
Frequency	2012.1	-0.043 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	$0.272(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.000)$	0.822	-4.19\%
Frequency	2012.2	-0.042 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.274(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.000)$	0.819	-4.14\%
Frequency	2013.1	$-0.044(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.280 ($\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.000$)	0.803	-4.30\%
Frequency	2013.2	-0.046 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.274 ($\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.000$)	0.808	-4.50\%
Frequency	2014.1	-0.049 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.284(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.000)$	0.798	-4.79\%
Frequency	2014.2	$-0.053(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.272 ($\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.000$)	0.815	-5.18\%
Frequency	2015.1	$-0.057(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.282 ($\mathrm{Cl}=+/-0.100 ; p=0.000)$	0.801	-5.52\%
Frequency	2015.2	$-0.061(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.272 ($\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.000)$	0.812	-5.92\%
Frequency	2016.1	$-0.074(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000$)	0.305 ($\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.000$)	0.896	-7.16\%
Frequency	2016.2	-0.075 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000$)	0.303 (CI = +/-0.091; p = 0.000)	0.893	-7.22\%

AB Funeral \& DB

Coverage $=A B$ Funeral \& DB
End Trend Period $=2022.2$
Excluded Points $=$ NA
Parameters Included: time, seasonality, mobility

Fit	Start Date	Time	Seasonality	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2011.1	$-0.022(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.228 ($\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.000$)	0.005 (Cl = +/-0.003; p = 0.002)	0.857	-2.20\%
Loss Cost	2011.2	$-0.025(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.221(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.003)$	0.868	-2.43\%
Loss Cost	2012.1	$-0.026(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.225 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.005)$	0.857	-2.53\%
Loss Cost	2012.2	$-0.024(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.002)$	$0.230(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.005)$	0.860	-2.35\%
Loss Cost	2013.1	$-0.025(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.003)$	$0.234(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.008)$	0.849	-2.49\%
Loss Cost	2013.2	$-0.027(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.004)$	$0.231(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.011)$	0.850	-2.62\%
Loss Cost	2014.1	$-0.029(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.006)$	$0.238(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.019)$	0.840	-2.85\%
Loss Cost	2014.2	$-0.033(\mathrm{Cl}=+/-0.020 ; p=0.003)$	$0.228(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.020)$	0.857	-3.27\%
Loss Cost	2015.1	$-0.034(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.008)$	0.230 ($\mathrm{Cl}=+/-0.089 ; p=0.000)$	$0.004(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.030)$	0.835	-3.35\%
Loss Cost	2015.2	$-0.037(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.008)$	$0.222(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.036)$	0.841	-3.66\%
Loss Cost	2016.1	$-0.050(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001)$	$0.252(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.039)$	0.896	-4.87\%
Loss Cost	2016.2	$-0.057(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.237 ($\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.025)$	0.924	-5.53\%
Severity	2011.1	$0.004(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.240)$	$-0.016(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.386)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.622)$	0.065	+0.39\%
Severity	2011.2	0.003 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.347)$	$-0.018(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.359)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.600)$	0.042	+0.33\%
Severity	2012.1	0.005 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.249)$	$-0.022(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.285)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.714)$	0.068	+0.45\%
Severity	2012.2	0.005 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.229)$	$-0.020(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.341)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.750)$	0.071	+0.51\%
Severity	2013.1	$0.004(\mathrm{Cl}=+/-0.010 ; p=0.382)$	$-0.017(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.444)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.687)$	-0.003	+0.42\%
Severity	2013.2	0.005 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.381)$	$-0.016(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.493)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.711)$	-0.010	+0.46\%
Severity	2014.1	$0.004(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.488)$	$-0.015(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.557)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.700)$	-0.060	+0.41\%
Severity	2014.2	$0.004(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.564)$	$-0.016(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.560)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.704)$	-0.085	+0.38\%
Severity	2015.1	0.005 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.494)$	$-0.019(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.508)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.783)$	-0.086	+0.52\%
Severity	2015.2	$0.006(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.474)$	$-0.017(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.576)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.800)$	-0.097	+0.61\%
Severity	2016.1	0.008 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.431)$	$-0.022(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.527)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.871)$	-0.107	+0.80\%
Severity	2016.2	$0.002(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.851)$	$-0.035(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.273)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.870)$	-0.109	+0.18\%
Frequency	2011.1	$-0.026(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.244 ($\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.001)$	0.887	-2.58\%
Frequency	2011.2	$-0.028(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.239(\mathrm{Cl}=+/-0.061 ; p=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.001)$	0.893	-2.76\%
Frequency	2012.1	$-0.030(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.246(\mathrm{Cl}=+/-0.063 ; p=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.002)$	0.890	-2.97\%
Frequency	2012.2	$-0.029(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.250 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.002)$	0.890	-2.85\%
Frequency	2013.1	$-0.029(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001)$	$0.251(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.004)$	0.877	-2.90\%
Frequency	2013.2	$-0.031(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.001)$	0.247 ($\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.006)$	0.879	-3.06\%
Frequency	2014.1	$-0.033(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.002)$	0.252 ($\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.010)$	0.868	-3.25\%
Frequency	2014.2	$-0.037(\mathrm{Cl}=+/-0.020 ; p=0.001)$	0.243 ($\mathrm{Cl}=+/-0.080 ; p=0.000)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.011)$	0.880	-3.63\%
Frequency	2015.1	$-0.039(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.003)$	0.249 ($\mathrm{Cl}=+/-0.087 ; p=0.000)$	$0.004(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.019)$	0.866	-3.85\%
Frequency	2015.2	$-0.043(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.003)$	0.240 ($\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.022)$	0.876	-4.25\%
Frequency	2016.1	$-0.058(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.274(\mathrm{Cl}=+/-0.067 ; p=0.000)$	$0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.012)$	0.941	-5.62\%
Frequency	2016.2	$-0.059(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.272 ($\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.017)$	0.939	-5.70\%

AB Funeral \& DB

Coverage $=A B$ Funeral \& $D B$
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time, seasonality

					Implied Trend
Fit	Start Date	Time	Seasonality	Adjusted R^2	Rate
Loss Cost	2011.1	-0.013 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.045$)	0.240 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.000$)	0.783	-1.29\%
Loss Cost	2011.2	-0.015 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.035$)	$0.234(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.000)$	0.783	-1.49\%
Loss Cost	2012.1	-0.015 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.061$)	$0.234(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.000)$	0.758	-1.50\%
Loss Cost	2012.2	$-0.010(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.214)$	0.247 ($\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.000)$	0.801	-0.99\%
Loss Cost	2013.1	$-0.010(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.282)$	0.247 ($\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.000)$	0.780	-1.00\%
Loss Cost	2013.2	$-0.009(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.408)$	0.250 ($\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.000$)	0.773	-0.88\%
Loss Cost	2014.1	$-0.009(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.462)$	$0.251(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.000)$	0.749	-0.94\%
Loss Cost	2014.2	$-0.013(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.380)$	$0.244(\mathrm{Cl}=+/-0.106 ; p=0.001)$	0.731	-1.33\%
Loss Cost	2015.1	$-0.010(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.597)$	0.237 ($\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.002)$	0.682	-0.99\%
Loss Cost	2015.2	$-0.011(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.650)$	0.236 ($\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.007$)	0.649	-1.06\%
Loss Cost	2016.1	$-0.034(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.209)$	$0.272(\mathrm{Cl}=+/-0.140 ; p=0.004)$	0.766	-3.37\%
Loss Cost	2016.2	-0.051 ($\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.141$)	$0.252(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.011)$	0.781	-4.97\%
Severity	2011.1	$0.007(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.052)$	0.010 ($\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.558$)	0.155	+0.70\%
Severity	2011.2	$0.007(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.075)$	$0.011(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.567)$	0.113	+0.71\%
Severity	2012.1	$0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.054)$	$0.006(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.750)$	0.158	+0.87\%
Severity	2012.2	$0.011(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.024)$	0.012 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.519)$	0.269	+1.12\%
Severity	2013.1	0.010 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.074$)	0.016 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.443)$	0.188	+0.98\%
Severity	2013.2	$0.013(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.035)$	0.023 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.282)$	0.303	+1.30\%
Severity	2014.1	$0.012(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.084)$	$0.024(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.305)$	0.251	+1.24\%
Severity	2014.2	0.016 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.062$)	0.030 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.229$)	0.305	+1.57\%
Severity	2015.1	0.019 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.066)$	$0.024(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.375)$	0.337	+1.91\%
Severity	2015.2	0.029 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.007$)	0.039 ($\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.083$)	0.701	+2.93\%
Severity	2016.1	$0.037(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.004)$	$0.027(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.173)$	0.817	+3.76\%
Severity	2016.2	$0.032(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.021)$	$0.021(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.298)$	0.683	+3.28\%
Frequency	2011.1	$-0.020(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.006)$	0.230 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.000$)	0.760	-1.97\%
Frequency	2011.2	-0.022 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.006$)	0.223 ($\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.000$)	0.765	-2.19\%
Frequency	2012.1	-0.024 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.009$)	0.228 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.000$)	0.746	-2.36\%
Frequency	2012.2	-0.021 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.031$)	0.235 ($\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.000$)	0.755	-2.09\%
Frequency	2013.1	$-0.020(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.075)$	$0.231(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.000)$	0.711	-1.96\%
Frequency	2013.2	$-0.022(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.091)$	0.227 ($\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.000$)	0.704	-2.15\%
Frequency	2014.1	$-0.022(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.154)$	0.227 ($\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.001$)	0.655	-2.16\%
Frequency	2014.2	$-0.029(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.104)$	0.214 ($\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.003$)	0.661	-2.86\%
Frequency	2015.1	$-0.029(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.189)$	$0.214(\mathrm{Cl}=+/-0.135 ; \mathrm{p}=0.007)$	0.586	-2.84\%
Frequency	2015.2	$-0.040(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.138)$	$0.198(\mathrm{Cl}=+/-0.147 ; \mathrm{p}=0.017)$	0.595	-3.88\%
Frequency	2016.1	-0.071 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.014$)	0.245 ($\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.003$)	0.837	-6.86\%
Frequency	2016.2	-0.083 ($\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.022)$	0.231 ($\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.008$)	0.856	-7.99\%

AB Funeral \& DB

Coverage $=A B$ Funeral \& $D B$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: seasonality, mobility

Fit	Start Date	Seasonality	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2011.1	$0.204(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.740	0.00\%
Loss Cost	2011.2	0.205 ($\mathrm{Cl}=+/-0.086 ; p=0.000)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.739	0.00\%
Loss Cost	2012.1	0.197 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.000$)	$0.008(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.729	0.00\%
Loss Cost	2012.2	0.214 (Cl $=+/-0.087 ; p=0.000)$	$0.008(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.762	0.00\%
Loss Cost	2013.1	0.207 ($\mathrm{Cl}=+/-0.090 ; p=0.000$)	$0.008(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.750	0.00\%
Loss Cost	2013.2	0.213 ($\mathrm{Cl}=+/-0.095 ; p=0.000)$	$0.008(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.753	0.00\%
Loss Cost	2014.1	0.207 ($\mathrm{Cl}=+/-0.100 ; p=0.000$)	$0.008(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.737	0.00\%
Loss Cost	2014.2	0.206 ($\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.001$)	$0.008(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001)$	0.734	0.00\%
Loss Cost	2015.1	$0.194(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.002)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001)$	0.719	0.00\%
Loss Cost	2015.2	$0.199(\mathrm{Cl}=+/-0.121 ; p=0.004)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.002)$	0.718	0.00\%
Loss Cost	2016.1	$0.202(\mathrm{Cl}=+/-0.131 ; p=0.006)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.003)$	0.704	0.00\%
Loss Cost	2016.2	0.203 ($\mathrm{Cl}=+/-0.147 ; ~ p=0.012$)	$0.007(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.006)$	0.699	0.00\%
Severity	2011.1	-0.012 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.518$)	$-0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.145)$	0.045	0.00\%
Severity	2011.2	-0.016 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.416$)	$-0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.185)$	0.045	0.00\%
Severity	2012.1	$-0.017(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.398)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.188)$	0.047	0.00\%
Severity	2012.2	$-0.017(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.430)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.203)$	0.042	0.00\%
Severity	2013.1	$-0.013(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.557)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.235)$	0.009	0.00\%
Severity	2013.2	$-0.013(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.570)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.261)$	0.002	0.00\%
Severity	2014.1	-0.010 ($\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.662$)	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.296)$	-0.025	0.00\%
Severity	2014.2	-0.013 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.609)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.355)$	-0.034	0.00\%
Severity	2015.1	$-0.014(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.611$)	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.368)$	-0.044	0.00\%
Severity	2015.2	$-0.013(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.651)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.395)$	-0.056	0.00\%
Severity	2016.1	-0.014 ($\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.669$)	-0.001 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.418)$	-0.074	0.00\%
Severity	2016.2	$-0.034(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.254)$	0.000 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.732)$	-0.002	0.00\%
Frequency	2011.1	0.216 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.749	0.00\%
Frequency	2011.2	0.220 ($\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.751	0.00\%
Frequency	2012.1	0.214 ($\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.000$)	0.009 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.740	0.00\%
Frequency	2012.2	0.230 ($\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.000$)	0.009 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.766	0.00\%
Frequency	2013.1	0.220 ($\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.000$)	0.009 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.759	0.00\%
Frequency	2013.2	0.226 ($\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.762	0.00\%
Frequency	2014.1	0.217 ($\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.001$)	0.009 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.750	0.00\%
Frequency	2014.2	$0.219(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.001)$	$0.009(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.747	0.00\%
Frequency	2015.1	0.208 (Cl $=+/-0.118 ; \mathrm{p}=0.002$)	$0.008(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001)$	0.732	0.00\%
Frequency	2015.2	0.212 ($\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.004$)	$0.008(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001$)	0.730	0.00\%
Frequency	2016.1	$0.216(\mathrm{Cl}=+/-0.139 ; p=0.006)$	$0.008(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.002)$	0.716	0.00\%
Frequency	2016.2	0.237 ($\mathrm{Cl}=+/-0.150 ; p=0.006)$	$0.008(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.005)$	0.733	0.00\%

CL

Coverage $=$ CL
End Trend Period = 2022.2
Excluded Points = NA
Parameters Included: time

Fit	Start Date	Time	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.026 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.457	+2.62\%
Loss Cost	2004.2	0.027 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	0.464	+2.74\%
Loss Cost	2005.1	0.028 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	0.464	+2.84\%
Loss Cost	2005.2	$0.029(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.460	+2.93\%
Loss Cost	2006.1	$0.030(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.467	+3.07\%
Loss Cost	2006.2	$0.031(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.448	+3.10\%
Loss Cost	2007.1	$0.032(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.445	+3.21\%
Loss Cost	2007.2	$0.034(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.467	+3.45\%
Loss Cost	2008.1	$0.036(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.478	+3.65\%
Loss Cost	2008.2	$0.038(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.483	+3.84\%
Loss Cost	2009.1	0.040 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.490	+4.06\%
Loss Cost	2009.2	$0.041(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.476	+4.17\%
Loss Cost	2010.1	$0.041(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.448	+4.19\%
Loss Cost	2010.2	0.040 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000$)	0.408	+4.10\%
Loss Cost	2011.1	$0.041(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.001)$	0.379	+4.14\%
Loss Cost	2011.2	$0.041(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.002)$	0.348	+4.15\%
Loss Cost	2012.1	0.040 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.005$)	0.303	+4.05\%
Loss Cost	2012.2	$0.036(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.015$)	0.235	+3.68\%
Loss Cost	2013.1	$0.033(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.039)$	0.172	+3.35\%
Loss Cost	2013.2	$0.028(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.097)$	0.103	+2.88\%
Loss Cost	2014.1	$0.026(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.170)$	0.059	+2.62\%
Loss Cost	2014.2	$0.024(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.263)$	0.022	+2.38\%
Loss Cost	2015.1	$0.017(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.475)$	-0.032	+1.67\%
Loss Cost	2015.2	$0.012(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.651)$	-0.059	+1.19\%
Loss Cost	2016.1	$0.002(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.959)$	-0.083	+0.15\%
Loss Cost	2016.2	$-0.008(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.809)$	-0.085	-0.81\%
Severity	2004.1	$0.039(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.935	+3.99\%
Severity	2004.2	0.040 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.934	+4.05\%
Severity	2005.1	$0.041(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.937	+4.14\%
Severity	2005.2	0.041 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.935	+4.19\%
Severity	2006.1	$0.043(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.946	+4.34\%
Severity	2006.2	$0.043(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.946	+4.42\%
Severity	2007.1	$0.044(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.947	+4.50\%
Severity	2007.2	0.045 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.945	+4.56\%
Severity	2008.1	$0.046(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.949	+4.69\%
Severity	2008.2	$0.047(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.949	+4.77\%
Severity	2009.1	0.048 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.958	+4.95\%
Severity	2009.2	0.049 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.955	+4.99\%
Severity	2010.1	0.049 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.952	+5.06\%
Severity	2010.2	$0.050(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.948	+5.10\%
Severity	2011.1	$0.051(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.953	+5.27\%
Severity	2011.2	$0.052(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.952	+5.39\%
Severity	2012.1	$0.055(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.961	+5.61\%
Severity	2012.2	$0.056(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.960	+5.73\%
Severity	2013.1	$0.058(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.966	+5.94\%
Severity	2013.2	$0.058(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.962	+6.00\%
Severity	2014.1	0.060 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.964	+6.19\%
Severity	2014.2	$0.059(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.958	+6.07\%
Severity	2015.1	$0.059(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.950	+6.12\%
Severity	2015.2	$0.058(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.941	+5.94\%
Severity	2016.1	$0.057(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.928	+5.87\%
Severity	2016.2	0.055 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.910	+5.69\%
Frequency	2004.1	$-0.013(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.002)$	0.208	-1.32\%
Frequency	2004.2	$-0.013(\mathrm{Cl}=+/-0.009 ; p=0.005)$	0.179	-1.26\%
Frequency	2005.1	$-0.013(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.008)$	0.163	-1.25\%
Frequency	2005.2	$-0.012(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.015)$	0.141	-1.21\%
Frequency	2006.1	$-0.012(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.021)$	0.130	-1.22\%
Frequency	2006.2	$-0.013(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.024)$	0.126	-1.26\%
Frequency	2007.1	$-0.012(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.037)$	0.108	-1.24\%
Frequency	2007.2	$-0.011(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.084)$	0.069	-1.07\%
Frequency	2008.1	$-0.010(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.130)$	0.047	-0.99\%
Frequency	2008.2	$-0.009(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.199)$	0.025	-0.89\%
Frequency	2009.1	$-0.009(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.254)$	0.013	-0.85\%
Frequency	2009.2	$-0.008(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.329)$	0.000	-0.78\%
Frequency	2010.1	$-0.008(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.337)$	-0.002	-0.83\%
Frequency	2010.2	$-0.010(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.308)$	0.004	-0.95\%
Frequency	2011.1	$-0.011(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.286)$	0.008	-1.08\%
Frequency	2011.2	$-0.012(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.289)$	0.008	-1.17\%
Frequency	2012.1	$-0.015(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.217)$	0.029	-1.48\%
Frequency	2012.2	-0.020 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.134$)	0.067	-1.94\%
Frequency	2013.1	-0.025 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.081$)	0.113	-2.45\%
Frequency	2013.2	$-0.030(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.056$)	0.151	-2.94\%
Frequency	2014.1	$-0.034(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.049)$	0.172	-3.36\%
Frequency	2014.2	$-0.035(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.069)$	0.151	-3.48\%
Frequency	2015.1	$-0.043(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.049)$	0.196	-4.20\%
Frequency	2015.2	$-0.046(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.063)$	0.182	-4.49\%
Frequency	2016.1	-0.056 ($\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.049$)	0.227	-5.40\%
Frequency	2016.2	$-0.063(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.052)$	0.239	-6.15\%

Coverage $=C L$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.026 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.045 ($\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.380$)	0.454	+2.60\%
Loss Cost	2004.2	$0.027(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.053(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.304)$	0.466	+2.74\%
Loss Cost	2005.1	0.028 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	0.049 ($\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.359$)	0.462	+2.82\%
Loss Cost	2005.2	$0.029(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.055 ($\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.309$)	0.461	+2.93\%
Loss Cost	2006.1	0.030 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.049 ($\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.379)$	0.463	+3.04\%
Loss Cost	2006.2	$0.031(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.052(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.365)$	0.446	+3.10\%
Loss Cost	2007.1	$0.031(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.047(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.421)$	0.439	+3.18\%
Loss Cost	2007.2	$0.034(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.060(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.307$)	0.468	+3.45\%
Loss Cost	2008.1	0.036 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.052(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.391)$	0.474	+3.62\%
Loss Cost	2008.2	0.038 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.062(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.313)$	0.484	+3.84\%
Loss Cost	2009.1	$0.039(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.054(\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.394)$	0.485	+4.01\%
Loss Cost	2009.2	$0.041(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.061(\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.354)$	0.474	+4.17\%
Loss Cost	2010.1	0.040 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.062(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.361)$	0.445	+4.13\%
Loss Cost	2010.2	0.040 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.061(\mathrm{Cl}=+/-0.144 ; \mathrm{p}=0.388)$	0.402	+4.10\%
Loss Cost	2011.1	0.040 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.001$)	$0.063(\mathrm{Cl}=+/-0.152 ; \mathrm{p}=0.398)$	0.372	+4.07\%
Loss Cost	2011.2	$0.041(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.002)$	$0.066(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.396)$	0.341	+4.15\%
Loss Cost	2012.1	$0.039(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.006)$	$0.073(\mathrm{Cl}=+/-0.167 ; \mathrm{p}=0.368)$	0.298	+3.95\%
Loss Cost	2012.2	$0.036(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.017)$	$0.064(\mathrm{Cl}=+/-0.174 ; \mathrm{p}=0.449)$	0.218	+3.68\%
Loss Cost	2013.1	$0.032(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.049)$	$0.080(\mathrm{Cl}=+/-0.182 ; \mathrm{p}=0.368)$	0.165	+3.22\%
Loss Cost	2013.2	$0.028(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.102)$	$0.069(\mathrm{Cl}=+/-0.191 ; \mathrm{p}=0.453)$	0.081	+2.88\%
Loss Cost	2014.1	$0.024(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.202)$	$0.082(\mathrm{Cl}=+/-0.202 ; \mathrm{p}=0.401)$	0.044	+2.47\%
Loss Cost	2014.2	$0.024(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.270)$	$0.080(\mathrm{Cl}=+/-0.216 ; \mathrm{p}=0.442)$	-0.003	+2.38\%
Loss Cost	2015.1	$0.014(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.546)$	$0.107(\mathrm{Cl}=+/-0.225 ; \mathrm{p}=0.324)$	-0.028	+1.41\%
Loss Cost	2015.2	$0.012(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.654)$	$0.101(\mathrm{Cl}=+/-0.243 ; \mathrm{p}=0.381)$	-0.074	+1.19\%
Loss Cost	2016.1	$-0.003(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.926$)	$0.138(\mathrm{Cl}=+/-0.252 ; \mathrm{p}=0.255)$	-0.044	-0.27\%
Loss Cost	2016.2	$-0.008(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.809$)	$0.126(\mathrm{Cl}=+/-0.274 ; \mathrm{p}=0.331)$	-0.080	-0.81\%
Severity	2004.1	$0.039(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.024)$	0.942	+3.98\%
Severity	2004.2	0.040 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.046 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.013$)	0.944	+4.05\%
Severity	2005.1	0.040 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.042(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.022)$	0.945	+4.12\%
Severity	2005.2	$0.041(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.046(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.013)$	0.945	+4.19\%
Severity	2006.1	0.042 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.038(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.024)$	0.953	+4.32\%
Severity	2006.2	0.043 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.043(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.010)$	0.956	+4.42\%
Severity	2007.1	$0.044(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.040(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.017)$	0.955	+4.48\%
Severity	2007.2	0.045 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.044(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.009)$	0.955	+4.56\%
Severity	2008.1	0.046 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.039(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.018)$	0.957	+4.66\%
Severity	2008.2	0.047 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.044(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.007$)	0.960	+4.77\%
Severity	2009.1	0.048 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.038(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.013)$	0.966	+4.92\%
Severity	2009.2	$0.049(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.009)$	0.965	+4.99\%
Severity	2010.1	$0.049(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.039(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.014)$	0.962	+5.02\%
Severity	2010.2	$0.050(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.043(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.009)$	0.960	+5.10\%
Severity	2011.1	$0.051(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.038 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.019)$	0.962	+5.23\%
Severity	2011.2	$0.052(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.043(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.006)$	0.966	+5.39\%
Severity	2012.1	$0.054(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.037(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.011$)	0.971	+5.56\%
Severity	2012.2	$0.056(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.043 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.003$)	0.975	+5.73\%
Severity	2013.1	$0.057(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.037(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.005$)	0.978	+5.88\%
Severity	2013.2	$0.058(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.003)$	0.977	+6.00\%
Severity	2014.1	$0.059(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.037(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.007$)	0.977	+6.12\%
Severity	2014.2	$0.059(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.036(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.012)$	0.972	+6.07\%
Severity	2015.1	0.059 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.037(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.015$)	0.967	+6.03\%
Severity	2015.2	$0.058(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.035(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.028)$	0.958	+5.94\%
Severity	2016.1	0.056 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.040 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.018)$	0.953	+5.74\%
Severity	2016.2	0.055 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.039(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.032)$	0.939	+5.69\%
Frequency	2004.1	$-0.013(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.003)$	$0.003(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.940)$	0.186	-1.32\%
Frequency	2004.2	$-0.013(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.006$)	$0.007(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.875)$	0.155	-1.26\%
Frequency	2005.1	$-0.013(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.009)$	$0.007(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.883)$	0.138	-1.25\%
Frequency	2005.2	-0.012 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.017)$	0.010 ($\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.847$)	0.115	-1.21\%
Frequency	2006.1	-0.012 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.022$)	0.010 ($\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.839$)	0.103	-1.23\%
Frequency	2006.2	$-0.013(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.026)$	$0.008(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.874$)	0.098	-1.26\%
Frequency	2007.1	-0.012 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.040$)	$0.007(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.896)$	0.078	-1.24\%
Frequency	2007.2	$-0.011(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.089)$	$0.016(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.769)$	0.038	-1.07\%
Frequency	2008.1	$-0.010(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.134)$	$0.013(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.824)$	0.014	-1.00\%
Frequency	2008.2	$-0.009(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.207)$	$0.018(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.761$)	-0.008	-0.89\%
Frequency	2009.1	$-0.009(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.257)$	$0.016(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.789)$	-0.023	-0.86\%
Frequency	2009.2	$-0.008(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.338)$	0.020 ($\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.752$)	-0.038	-0.78\%
Frequency	2010.1	$-0.009(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.336)$	$0.023(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.726)$	-0.039	-0.85\%
Frequency	2010.2	$-0.010(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.318)$	$0.019(\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.784)$	-0.038	-0.95\%
Frequency	2011.1	-0.011 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.287)$	0.025 ($\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.724$)	-0.033	-1.11\%
Frequency	2011.2	$-0.012(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.299)$	$0.023(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.761)$	-0.036	-1.17\%
Frequency	2012.1	$-0.015(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.214)$	$0.036(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.638)$	-0.010	-1.52\%
Frequency	2012.2	$-0.020(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.145)$	$0.022(\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.784)$	0.020	-1.94\%
Frequency	2013.1	$-0.025(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.081$)	$0.042(\mathrm{Cl}=+/-0.167 ; \mathrm{p}=0.601)$	0.076	-2.51\%
Frequency	2013.2	$-0.030(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.063)$	$0.028(\mathrm{Cl}=+/-0.174 ; \mathrm{p}=0.734)$	0.104	-2.94\%
Frequency	2014.1	$-0.035(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.051)$	$0.045(\mathrm{Cl}=+/-0.182 ; \mathrm{p}=0.608)$	0.133	-3.44\%
Frequency	2014.2	$-0.035(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.077)$	$0.044(\mathrm{Cl}=+/-0.195 ; \mathrm{p}=0.638)$	0.105	-3.48\%
Frequency	2015.1	$-0.045(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.047)$	$0.070(\mathrm{Cl}=+/-0.202 ; \mathrm{p}=0.471)$	0.170	-4.35\%
Frequency	2015.2	$-0.046(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.071$)	$0.066(\mathrm{Cl}=+/-0.218 ; \mathrm{p}=0.522)$	0.145	-4.49\%
Frequency	2016.1	$-0.059(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.043)$	$0.098(\mathrm{Cl}=+/-0.227 ; \mathrm{p}=0.364)$	0.220	-5.69\%
Frequency	2016.2	$-0.063(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.058)$	$0.087(\mathrm{Cl}=+/-0.247 ; \mathrm{p}=0.450)$	0.211	-6.15\%

Coverage $=C L$
End Trend Period $=2021.1$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.023 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.042 ($\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.428$)	0.338	+2.28\%
Loss Cost	2004.2	$0.024(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.051(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.352)$	0.350	+2.42\%
Loss Cost	2005.1	0.025 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.047 ($\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.400)$	0.345	+2.49\%
Loss Cost	2005.2	0.026 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	$0.053(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.354)$	0.343	+2.61\%
Loss Cost	2006.1	0.027 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	$0.048(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.418)$	0.344	+2.72\%
Loss Cost	2006.2	$0.027(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.001$)	$0.050(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.413)$	0.321	+2.76\%
Loss Cost	2007.1	0.028 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001$)	0.047 ($\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.461$)	0.313	+2.84\%
Loss Cost	2007.2	$0.031(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.001$)	$0.061(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.343)$	0.346	+3.14\%
Loss Cost	2008.1	0.033 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001$)	$0.053(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.420)$	0.352	+3.32\%
Loss Cost	2008.2	0.035 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.001$)	$0.065(\mathrm{Cl}=+/-0.137 ; \mathrm{p}=0.341)$	0.364	+3.58\%
Loss Cost	2009.1	$0.037(\mathrm{Cl}=+/-0.020 ; p=0.001)$	$0.057(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.415)$	0.365	+3.77\%
Loss Cost	2009.2	0.039 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.001$)	$0.064(\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.378)$	0.352	+3.95\%
Loss Cost	2010.1	0.038 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.003$)	$0.067(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.379)$	0.318	+3.87\%
Loss Cost	2010.2	0.037 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.007$)	$0.065(\mathrm{Cl}=+/-0.164 ; \mathrm{p}=0.416)$	0.265	+3.82\%
Loss Cost	2011.1	$0.037(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.014)$	$0.068(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.420)$	0.231	+3.74\%
Loss Cost	2011.2	0.038 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.023$)	$0.071(\mathrm{Cl}=+/-0.183 ; \mathrm{p}=0.426$)	0.194	+3.82\%
Loss Cost	2012.1	0.035 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.053$)	$0.080(\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.391$)	0.148	+3.52\%
Loss Cost	2012.2	0.030 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.122$)	$0.067(\mathrm{Cl}=+/-0.204 ; \mathrm{p}=0.497$)	0.055	+3.07\%
Loss Cost	2013.1	$0.024(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.263)$	$0.086(\mathrm{Cl}=+/-0.212 ; \mathrm{p}=0.402)$	0.007	+2.38\%
Loss Cost	2013.2	0.017 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.457$)	$0.068(\mathrm{Cl}=+/-0.226 ; \mathrm{p}=0.527$)	-0.078	+1.76\%
Loss Cost	2014.1	$0.010(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.697)$	$0.086(\mathrm{Cl}=+/-0.240 ; \mathrm{p}=0.448)$	-0.096	+1.02\%
Loss Cost	2014.2	0.006 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.835$)	$0.077(\mathrm{Cl}=+/-0.262 ; \mathrm{p}=0.532)$	-0.137	+0.63\%
Loss Cost	2015.1	$-0.010(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.751)$	$0.113(\mathrm{Cl}=+/-0.268 ; \mathrm{p}=0.370)$	-0.092	-1.04\%
Loss Cost	2015.2	-0.019 ($\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.622$)	$0.094(\mathrm{Cl}=+/-0.297 ; \mathrm{p}=0.494$)	-0.112	-1.93\%
Loss Cost	2016.1	-0.048 ($\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.262$)	$0.146(\mathrm{Cl}=+/-0.292 ; \mathrm{p}=0.281)$	0.074	-4.71\%
Loss Cost	2016.2	$-0.071(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.177)$	$0.105(\mathrm{Cl}=+/-0.321 ; \mathrm{p}=0.465$)	0.130	-6.84\%
Severity	2004.1	$0.036(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.039(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.023)$	0.939	+3.71\%
Severity	2004.2	0.037 ($\mathrm{Cl}=+/-0.003 ; p=0.000)$	$0.043(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.013)$	0.939	+3.78\%
Severity	2005.1	0.038 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.039(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.022)$	0.940	+3.85\%
Severity	2005.2	$0.038(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.043(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.014)$	0.939	+3.92\%
Severity	2006.1	0.040 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$0.036(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.024)$	0.949	+4.05\%
Severity	2006.2	$0.041(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.010)$	0.951	+4.15\%
Severity	2007.1	$0.041(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.038(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.017)$	0.949	+4.20\%
Severity	2007.2	0.042 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.042(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.010)$	0.948	+4.28\%
Severity	2008.1	0.043 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$0.038(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.019)$	0.950	+4.38\%
Severity	2008.2	0.044 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.043 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.008$)	0.953	+4.50\%
Severity	2009.1	0.045 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$0.037(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.014)$	0.960	+4.65\%
Severity	2009.2	0.046 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.040 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.011$)	0.957	+4.72\%
Severity	2010.1	0.046 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.039(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.016)$	0.952	+4.73\%
Severity	2010.2	0.047 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.042(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.012)$	0.949	+4.82\%
Severity	2011.1	0.048 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.038(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.023)$	0.950	+4.95\%
Severity	2011.2	0.050 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.044 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.008$)	0.954	+5.14\%
Severity	2012.1	$0.052(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.038(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.014$)	0.960	+5.33\%
Severity	2012.2	$0.054(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.045 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.004$)	0.964	+5.54\%
Severity	2013.1	0.056 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.040 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.007$)	0.967	+5.72\%
Severity	2013.2	$0.057(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$0.044(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.004)$	0.966	+5.87\%
Severity	2014.1	$0.058(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.009)$	0.964	+6.01\%
Severity	2014.2	$0.058(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.039(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.019)$	0.954	+5.92\%
Severity	2015.1	$0.057(\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.041(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.022)$	0.945	+5.82\%
Severity	2015.2	0.055 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.037(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.046)$	0.925	+5.63\%
Severity	2016.1	$0.051(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.044(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.022)$	0.922	+5.25\%
Severity	2016.2	0.049 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	0.040 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.050$)	0.884	+5.03\%
Frequency	2004.1	$-0.014(\mathrm{Cl}=+/-0.010 ; p=0.007)$	$0.004(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.940)$	0.158	-1.38\%
Frequency	2004.2	-0.013 ($\mathrm{Cl}=+/-0.010 ; p=0.014$)	$0.008(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.874$)	0.127	-1.31\%
Frequency	2005.1	-0.013 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.021$)	$0.008(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.878)$	0.111	-1.31\%
Frequency	2005.2	$-0.013(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.035)$	$0.011(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.843)$	0.087	-1.26\%
Frequency	2006.1	-0.013 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.044$)	$0.012(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.832)$	0.076	-1.28\%
Frequency	2006.2	$-0.013(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.051)$	$0.009(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.874)$	0.072	-1.33\%
Frequency	2007.1	-0.013 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.071$)	$0.008(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.891)$	0.053	-1.31\%
Frequency	2007.2	-0.011 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.151$)	$0.019(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.758)$	0.013	-1.10\%
Frequency	2008.1	$-0.010(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.211)$	$0.015(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.808)$	-0.011	-1.02\%
Frequency	2008.2	-0.009 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.315$)	$0.022(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.741)$	-0.032	-0.88\%
Frequency	2009.1	-0.008 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.371$)	0.020 ($\mathrm{Cl}=+/-0.139 ; \mathrm{p}=0.767$)	-0.047	-0.85\%
Frequency	2009.2	-0.007 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.475$)	0.025 ($\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.727$)	-0.060	-0.73\%
Frequency	2010.1	-0.008 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.463$)	$0.028(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.705$)	-0.062	-0.82\%
Frequency	2010.2	$-0.010(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.438)$	$0.023(\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.767$)	-0.063	-0.95\%
Frequency	2011.1	-0.012 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.392$)	$0.030(\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.712)$	-0.058	-1.15\%
Frequency	2011.2	-0.013 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.405$)	$0.027(\mathrm{Cl}=+/-0.179 ; \mathrm{p}=0.755$)	-0.062	-1.25\%
Frequency	2012.1	$-0.017(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.294)$	$0.042(\mathrm{Cl}=+/-0.186 ; \mathrm{p}=0.638)$	-0.034	-1.72\%
Frequency	2012.2	$-0.024(\mathrm{Cl}=+/-0.037 ; p=0.197)$	$0.022(\mathrm{Cl}=+/-0.194 ; \mathrm{p}=0.812)$	-0.002	-2.34\%
Frequency	2013.1	-0.032 ($\mathrm{Cl}=+/-0.040 ; p=0.110$)	0.046 ($\mathrm{Cl}=+/-0.198 ; \mathrm{p}=0.627$)	0.067	-3.15\%
Frequency	2013.2	$-0.040(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.080$)	$0.024(\mathrm{Cl}=+/-0.208 ; \mathrm{p}=0.805)$	0.108	-3.89\%
Frequency	2014.1	$-0.048(\mathrm{Cl}=+/-0.050 ; p=0.058)$	$0.045(\mathrm{Cl}=+/-0.217 ; \mathrm{p}=0.656)$	0.156	-4.70\%
Frequency	2014.2	$-0.051(\mathrm{Cl}=+/-0.059 ; p=0.083)$	$0.038(\mathrm{Cl}=+/-0.238 ; \mathrm{p}=0.732)$	0.133	-4.99\%
Frequency	2015.1	$-0.067(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.043$)	$0.072(\mathrm{Cl}=+/-0.242 ; \mathrm{p}=0.522)$	0.240	-6.48\%
Frequency	2015.2	$-0.074(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.060$)	$0.056(\mathrm{Cl}=+/-0.269 ; \mathrm{p}=0.646)$	0.229	-7.15\%
Frequency	2016.1	$-0.099(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.026)$	$0.103(\mathrm{Cl}=+/-0.267 ; \mathrm{p}=0.402)$	0.383	-9.46\%
Frequency	2016.2	$-0.120(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.028)$	0.065 ($\mathrm{Cl}=+/-0.294 ; \mathrm{p}=0.617$)	0.428	-11.30\%

Coverage $=\mathrm{CL}$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, scalar_level_change, mobility
Scalar Level Change Start Date $=2022-07-01$

Fit	Start Date	Time	Mobility	Scalar Shift	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.035 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.099(\mathrm{Cl}=+/-0.279 ; \mathrm{p}=0.477)$	0.637	+3.52\%
Loss Cost	2004.2	0.037 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.082(\mathrm{Cl}=+/-0.276 ; \mathrm{p}=0.549)$	0.656	+3.74\%
Loss Cost	2005.1	0.039 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.067(\mathrm{Cl}=+/-0.274 ; \mathrm{p}=0.620)$	0.668	+3.94\%
Loss Cost	2005.2	$0.041(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.053(\mathrm{Cl}=+/-0.274 ; \mathrm{p}=0.696)$	0.678	+4.15\%
Loss Cost	2006.1	$0.043(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.033(\mathrm{Cl}=+/-0.268 ; \mathrm{p}=0.803)$	0.701	+4.43\%
Loss Cost	2006.2	0.045 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.011 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.023 (Cl $=+/-0.271 ; \mathrm{p}=0.862)$	0.696	+4.57\%
Loss Cost	2007.1	$0.047(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.269 ; \mathrm{p}=0.969)$	0.710	+4.85\%
Loss Cost	2007.2	$0.052(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	-0.025 ($\mathrm{Cl}=+/-0.250 ; \mathrm{p}=0.838$)	0.759	+5.32\%
Loss Cost	2008.1	$0.056(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.054(\mathrm{Cl}=+/-0.233 ; \mathrm{p}=0.640)$	0.798	+5.78\%
Loss Cost	2008.2	$0.061(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.082(\mathrm{Cl}=+/-0.217 ; \mathrm{p}=0.445)$	0.832	+6.25\%
Loss Cost	2009.1	$0.066(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.114(\mathrm{Cl}=+/-0.192 ; \mathrm{p}=0.232)$	0.874	+6.80\%
Loss Cost	2009.2	$0.070(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.138(\mathrm{Cl}=+/-0.179 ; \mathrm{p}=0.124)$	0.893	+7.23\%
Loss Cost	2010.1	$0.073(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.157(\mathrm{Cl}=+/-0.175 ; \mathrm{p}=0.077)$	0.900	+7.56\%
Loss Cost	2010.2	$0.075(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.016 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.168(\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.062)$	0.896	+7.78\%
Loss Cost	2011.1	$0.079(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.016 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.191(\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.028)$	0.909	+8.23\%
Loss Cost	2011.2	$0.084(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.017(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.215(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.010)$	0.922	+8.72\%
Loss Cost	2012.1	$0.087(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.017(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.232(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.006)$	0.924	+9.08\%
Loss Cost	2012.2	$0.087(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.017(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.231(\mathrm{Cl}=+/-0.164 ; \mathrm{p}=0.008)$	0.914	+9.06\%
Loss Cost	2013.1	$0.088(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.017(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.236(\mathrm{Cl}=+/-0.172 ; \mathrm{p}=0.010)$	0.905	+9.17\%
Loss Cost	2013.2	$0.087(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.017(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.234(\mathrm{Cl}=+/-0.182 ; \mathrm{p}=0.015)$	0.894	+9.12\%
Loss Cost	2014.1	$0.091(\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.017(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.250(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.013)$	0.893	+9.52\%
Loss Cost	2014.2	$0.096(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.018 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$-0.271(\mathrm{Cl}=+/-0.192 ; \mathrm{p}=0.009)$	0.897	+10.07\%
Loss Cost	2015.1	$0.094(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$0.018(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.262(\mathrm{Cl}=+/-0.205 ; \mathrm{p}=0.016)$	0.887	+9.83\%
Loss Cost	2015.2	$0.096(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	0.018 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.272(\mathrm{Cl}=+/-0.221 ; \mathrm{p}=0.020)$	0.882	+10.11\%
Loss Cost	2016.1	$0.090(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	$0.017(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.248(\mathrm{Cl}=+/-0.232 ; \mathrm{p}=0.038)$	0.881	+9.37\%
Loss Cost	2016.2	$0.083(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.001)$	$0.017(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.228(\mathrm{Cl}=+/-0.249 ; \mathrm{p}=0.068)$	0.881	+8.70\%
Severity	2004.1	$0.036(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.042)$	$0.165(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.006)$	0.948	+3.65\%
Severity	2004.2	$0.036(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.056)$	$0.161(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.007)$	0.946	+3.70\%
Severity	2005.1	$0.037(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.077)$	$0.154(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.009)$	0.948	+3.80\%
Severity	2005.2	$0.038(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.097)$	$0.150(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.012$)	0.945	+3.85\%
Severity	2006.1	0.040 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.139)$	$0.138(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.012)$	0.955	+4.03\%
Severity	2006.2	0.040 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.183)$	$0.132(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.015)$	0.954	+4.11\%
Severity	2007.1	$0.041(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.241)$	$0.126(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.020)$	0.954	+4.21\%
Severity	2007.2	$0.042(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.289)$	$0.122(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.026)$	0.951	+4.26\%
Severity	2008.1	$0.043(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.402)$	$0.112(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.033)$	0.954	+4.42\%
Severity	2008.2	$0.044(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.498)$	$0.106(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.044)$	0.953	+4.52\%
Severity	2009.1	$0.046(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.722)$	$0.092(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.054)$	0.961	+4.75\%
Severity	2009.2	$0.047(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.773)$	$0.090(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.066)$	0.958	+4.79\%
Severity	2010.1	0.048 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.874)$	0.085 ($\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.086$)	0.955	+4.88\%
Severity	2010.2	0.048 (CI $=+/-0.007 ; ~ p=0.000)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.936)$	$0.083(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.107)$	0.951	+4.93\%
Severity	2011.1	$0.050(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.812)$	0.070 ($\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.150$)	0.955	+5.17\%
Severity	2011.2	$0.052(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.652)$	$0.061(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.206)$	0.954	+5.34\%
Severity	2012.1	$0.055(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.336)$	$0.044(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.304)$	0.964	+5.69\%
Severity	2012.2	$0.057(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.230)$	$0.035(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.413)$	0.964	+5.89\%
Severity	2013.1	$0.061(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.068$)	$0.017(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.636)$	0.973	+6.28\%
Severity	2013.2	$0.062(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.056$)	$0.012(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.760)$	0.970	+6.41\%
Severity	2014.1	$0.066(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.013$)	$-0.004(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.894)$	0.976	+6.80\%
Severity	2014.2	$0.065(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.024)$	$0.001(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.981)$	0.971	+6.67\%
Severity	2015.1	$0.066(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.022)$	$-0.005(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.883)$	0.968	+6.83\%
Severity	2015.2	$0.064(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.039)$	$0.003(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.939)$	0.961	+6.60\%
Severity	2016.1	$0.063(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.057)$	$0.004(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.912)$	0.951	+6.55\%
Severity	2016.2	$0.061(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.091$)	0.013 ($\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.765$)	0.939	+6.28\%
Frequency	2004.1	$-0.001(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.716)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.066(\mathrm{Cl}=+/-0.200 ; \mathrm{p}=0.504)$	0.656	-0.12\%
Frequency	2004.2	$0.000(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.908)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.079(\mathrm{Cl}=+/-0.196 ; \mathrm{p}=0.418)$	0.665	+0.04\%
Frequency	2005.1	$0.001(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.706)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.086(\mathrm{Cl}=+/-0.198 ; \mathrm{p}=0.380)$	0.667	+0.14\%
Frequency	2005.2	$0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.448)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.098(\mathrm{Cl}=+/-0.196 ; \mathrm{p}=0.319)$	0.675	+0.29\%
Frequency	2006.1	$0.004(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.340)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.105(\mathrm{Cl}=+/-0.199 ; \mathrm{p}=0.291)$	0.676	+0.38\%
Frequency	2006.2	$0.004(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.302)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.109(\mathrm{Cl}=+/-0.203 ; \mathrm{p}=0.281)$	0.676	+0.44\%
Frequency	2007.1	$0.006(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.176)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.121(\mathrm{Cl}=+/-0.202 ; \mathrm{p}=0.232)$	0.684	+0.62\%
Frequency	2007.2	0.010 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.022$)	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.147(\mathrm{Cl}=+/-0.181 ; \mathrm{p}=0.106)$	0.741	+1.02\%
Frequency	2008.1	$0.013(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.004)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.166(\mathrm{Cl}=+/-0.172 ; \mathrm{p}=0.058)$	0.771	+1.30\%
Frequency	2008.2	0.016 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.188(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.021)$	0.812	+1.65\%
Frequency	2009.1	0.019 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.206(\mathrm{Cl}=+/-0.149 ; \mathrm{p}=0.009)$	0.840	+1.95\%
Frequency	2009.2	$0.023(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.229(\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.002)$	0.877	+2.33\%
Frequency	2010.1	0.025 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.015 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.242(\mathrm{Cl}=+/-0.130 ; p=0.001)$	0.890	+2.56\%
Frequency	2010.2	$0.027(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.016 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	$-0.251(\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.001)$	0.894	+2.72\%
Frequency	2011.1	$0.029(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.016(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.261(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.001)$	0.900	+2.91\%
Frequency	2011.2	$0.032(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.016(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.276(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.000)$	0.912	+3.21\%
Frequency	2012.1	$0.032(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.016(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.276(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.000)$	0.911	+3.21\%
Frequency	2012.2	$0.030(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.016(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	$-0.266(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.001)$	0.914	+3.00\%
Frequency	2013.1	$0.027(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.254(\mathrm{Cl}=+/-0.140 ; p=0.001)$	0.918	+2.73\%
Frequency	2013.2	$0.025(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.002)$	0.016 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.246(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.003)$	0.919	+2.55\%
Frequency	2014.1	$0.025(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.006)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.246(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.004)$	0.918	+2.55\%
Frequency	2014.2	$0.031(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.002)$	0.016 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.272(\mathrm{Cl}=+/-0.149 ; \mathrm{p}=0.002)$	0.931	+3.19\%
Frequency	2015.1	$0.028(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.010)$	$0.016(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.257(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.004)$	0.935	+2.80\%
Frequency	2015.2	$0.032(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.008)$	0.016 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.275(\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.003)$	0.939	+3.30\%
Frequency	2016.1	$0.026(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.041)$	0.016 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.253(\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.006)$	0.946	+2.64\%
Frequency	2016.2	0.023 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.115$)	0.016 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.241(\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.013)$	0.946	+2.28\%

Coverage $=C L$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, mobility

Fit	Start Date	Time	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.036 (CI $=+/-0.009 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.642	+3.65\%
Loss Cost	2004.2	$0.038(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.663	+3.85\%
Loss Cost	2005.1	0.040 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.676	+4.04\%
Loss Cost	2005.2	$0.041(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.686	+4.23\%
Loss Cost	2006.1	$0.044(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.710	+4.49\%
Loss Cost	2006.2	0.045 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.705	+4.62\%
Loss Cost	2007.1	0.047 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.720	+4.86\%
Loss Cost	2007.2	$0.051(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.767	+5.27\%
Loss Cost	2008.1	$0.055(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.804	+5.66\%
Loss Cost	2008.2	0.059 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	0.013 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.835	+6.05\%
Loss Cost	2009.1	$0.063(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.872	+6.50\%
Loss Cost	2009.2	$0.066(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.886	+6.83\%
Loss Cost	2010.1	0.068 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.889	+7.07\%
Loss Cost	2010.2	$0.069(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.883	+7.20\%
Loss Cost	2011.1	$0.072(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.015(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.889	+7.50\%
Loss Cost	2011.2	0.075 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.894	+7.82\%
Loss Cost	2012.1	$0.077(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.889	+8.00\%
Loss Cost	2012.2	0.076 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.876	+7.87\%
Loss Cost	2013.1	$0.075(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.864	+7.82\%
Loss Cost	2013.2	$0.074(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.850	+7.63\%
Loss Cost	2014.1	$0.075(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.841	+7.74\%
Loss Cost	2014.2	0.076 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.835	+7.90\%
Loss Cost	2015.1	$0.072(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.828	+7.48\%
Loss Cost	2015.2	$0.071(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.820	+7.38\%
Loss Cost	2016.1	$0.064(\mathrm{Cl}=+/-0.030 ; p=0.001)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.831	+6.59\%
Loss Cost	2016.2	$0.057(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.003)$	$0.014(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.842	+5.86\%
Severity	2004.1	$0.038(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.208)$	0.936	+3.86\%
Severity	2004.2	$0.038(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.247)$	0.935	+3.92\%
Severity	2005.1	$0.039(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.310)$	0.937	+4.02\%
Severity	2005.2	0.040 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.357)$	0.935	+4.08\%
Severity	2006.1	$0.042(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.472)$	0.945	+4.26\%
Severity	2006.2	$0.043(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.557)$	0.945	+4.35\%
Severity	2007.1	$0.044(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.659)$	0.945	+4.45\%
Severity	2007.2	$0.044(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.733)$	0.943	+4.51\%
Severity	2008.1	$0.046(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.895)$	0.948	+4.67\%
Severity	2008.2	0.047 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.991$)	0.947	+4.77\%
Severity	2009.1	0.049 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.742)$	0.957	+4.99\%
Severity	2009.2	0.049 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.695$)	0.953	+5.05\%
Severity	2010.1	$0.050(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.613)$	0.951	+5.14\%
Severity	2010.2	$0.051(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.565$)	0.947	+5.21\%
Severity	2011.1	$0.053(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.387)$	0.952	+5.43\%
Severity	2011.2	$0.054(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.293)$	0.953	+5.59\%
Severity	2012.1	$0.057(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.127)$	0.964	+5.89\%
Severity	2012.2	0.059 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.084$)	0.964	+6.07\%
Severity	2013.1	$0.062(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.022)$	0.974	+6.37\%
Severity	2013.2	$0.063(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.019)$	0.972	+6.48\%
Severity	2014.1	$0.065(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.005)$	0.978	+6.77\%
Severity	2014.2	$0.065(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.007)$	0.974	+6.67\%
Severity	2015.1	$0.066(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.007$)	0.970	+6.78\%
Severity	2015.2	$0.064(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.010$)	0.964	+6.63\%
Severity	2016.1	$0.064(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.014)$	0.955	+6.60\%
Severity	2016.2	$0.062(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.002(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.019)$	0.944	+6.44\%
Frequency	2004.1	$-0.002(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.513)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.661	-0.20\%
Frequency	2004.2	-0.001 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.842$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.669	-0.06\%
Frequency	2005.1	$0.000(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.961$)	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.669	+0.02\%
Frequency	2005.2	$0.001(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.683)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.674	+0.14\%
Frequency	2006.1	$0.002(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.556)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.675	+0.22\%
Frequency	2006.2	$0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.512)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.674	+0.26\%
Frequency	2007.1	$0.004(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.343)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.679	+0.39\%
Frequency	2007.2	$0.007(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.075)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.725	+0.72\%
Frequency	2008.1	$0.009(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.025)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.746	+0.95\%
Frequency	2008.2	$0.012(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.005$)	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.775	+1.21\%
Frequency	2009.1	0.014 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.002$)	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.793	+1.43\%
Frequency	2009.2	$0.017(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.818	+1.70\%
Frequency	2010.1	0.018 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.823	+1.83\%
Frequency	2010.2	0.019 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.001$)	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.824	+1.89\%
Frequency	2011.1	0.019 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.001$)	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.824	+1.96\%
Frequency	2011.2	$0.021(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.001)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.828	+2.11\%
Frequency	2012.1	$0.020(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.004)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.829	+1.99\%
Frequency	2012.2	$0.017(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.017)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.838	+1.70\%
Frequency	2013.1	$0.014(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.063)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.851	+1.36\%
Frequency	2013.2	$0.011(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.164)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.859	+1.08\%
Frequency	2014.1	$0.009(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.285)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.861	+0.91\%
Frequency	2014.2	$0.011(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.226)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.861	+1.15\%
Frequency	2015.1	$0.007(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.511)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.875	+0.65\%
Frequency	2015.2	$0.007(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.532)$	0.013 (Cl $=+/-0.003 ; p=0.000)$	0.871	+0.71\%
Frequency	2016.1	$0.000(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.993)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.893	-0.01\%
Frequency	2016.2	$-0.005(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.671$)	0.013 (Cl = +/-0.003; p = 0.000)	0.900	-0.54\%

CL

Coverage $=\mathrm{CL}$
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time

Fit	Start Date	Time	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.032 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	0.598	+3.30\%
Loss Cost	2004.2	0.035 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.621	+3.52\%
Loss Cost	2005.1	$0.036(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.634	+3.71\%
Loss Cost	2005.2	$0.038(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.645	+3.91\%
Loss Cost	2006.1	0.041 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.672	+4.19\%
Loss Cost	2006.2	$0.042(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.665	+4.32\%
Loss Cost	2007.1	0.045 ($\mathrm{Cl}=+/-0.013 ; p=0.000)$	0.681	+4.59\%
Loss Cost	2007.2	0.050 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.741	+5.08\%
Loss Cost	2008.1	$0.054(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.789	+5.55\%
Loss Cost	2008.2	$0.059(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.830	+6.04\%
Loss Cost	2009.1	$0.064(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.882	+6.62\%
Loss Cost	2009.2	0.068 ($\mathrm{Cl}=+/-0.010 ; p=0.000$)	0.906	+7.08\%
Loss Cost	2010.1	0.072 ($\mathrm{Cl}=+/-0.010 ; p=0.000$)	0.915	+7.43\%
Loss Cost	2010.2	0.074 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.912	+7.66\%
Loss Cost	2011.1	0.078 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.930	+8.16\%
Loss Cost	2011.2	$0.084(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.950	+8.73\%
Loss Cost	2012.1	$0.088(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.958	+9.16\%
Loss Cost	2012.2	0.088 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.949	+9.17\%
Loss Cost	2013.1	$0.089(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.941	+9.33\%
Loss Cost	2013.2	$0.089(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.926	+9.32\%
Loss Cost	2014.1	$0.094(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.931	+9.91\%
Loss Cost	2014.2	$0.103(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.950	+10.80\%
Loss Cost	2015.1	$0.102(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.933	+10.68\%
Loss Cost	2015.2	$0.109(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.935	+11.48\%
Loss Cost	2016.1	$0.102(\mathrm{Cl}=+/-0.029 ; p=0.000)$	0.911	+10.70\%
Loss Cost	2016.2	0.095 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.002$)	0.864	+10.01\%
Severity	2004.1	$0.035(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.914	+3.54\%
Severity	2004.2	$0.035(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.909	+3.58\%
Severity	2005.1	0.036 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.912	+3.68\%
Severity	2005.2	$0.037(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.906	+3.72\%
Severity	2006.1	$0.038(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.924	+3.91\%
Severity	2006.2	$0.039(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.921	+3.98\%
Severity	2007.1	0.040 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.920	+4.07\%
Severity	2007.2	0.040 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.913	+4.12\%
Severity	2008.1	$0.042(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.919	+4.28\%
Severity	2008.2	$0.043(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.915	+4.37\%
Severity	2009.1	0.045 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.931	+4.61\%
Severity	2009.2	0.045 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.923	+4.63\%
Severity	2010.1	$0.046(\mathrm{Cl}=+/-0.007 ; ~ p=0.000)$	0.916	+4.71\%
Severity	2010.2	0.046 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.904	+4.75\%
Severity	2011.1	0.049 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.913	+5.00\%
Severity	2011.2	0.050 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.909	+5.18\%
Severity	2012.1	$0.054(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.931	+5.57\%
Severity	2012.2	0.056 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.930	+5.79\%
Severity	2013.1	$0.061(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.952	+6.24\%
Severity	2013.2	$0.062(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.946	+6.42\%
Severity	2014.1	$0.067(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.966	+6.94\%
Severity	2014.2	$0.066(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.956	+6.80\%
Severity	2015.1	$0.069(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.952	+7.09\%
Severity	2015.2	$0.066(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.935	+6.81\%
Severity	2016.1	$0.066(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.908	+6.83\%
Severity	2016.2	$0.062(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.002)$	0.859	+6.42\%
Frequency	2004.1	$-0.002(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.511)$	-0.018	-0.23\%
Frequency	2004.2	$-0.001(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.853)$	-0.033	-0.07\%
Frequency	2005.1	$0.000(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.940$)	-0.036	+0.03\%
Frequency	2005.2	$0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.650)$	-0.029	+0.18\%
Frequency	2006.1	$0.003(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.518)$	-0.022	+0.27\%
Frequency	2006.2	$0.003(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.470)$	-0.018	+0.33\%
Frequency	2007.1	$0.005(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.298)$	0.005	+0.50\%
Frequency	2007.2	$0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.048)$	0.123	+0.92\%
Frequency	2008.1	$0.012(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.011)$	0.226	+1.22\%
Frequency	2008.2	0.016 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.001$)	0.378	+1.60\%
Frequency	2009.1	0.019 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.494	+1.92\%
Frequency	2009.2	0.023 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.651	+2.33\%
Frequency	2010.1	0.026 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.703	+2.60\%
Frequency	2010.2	$0.027(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.714	+2.78\%
Frequency	2011.1	0.030 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.734	+3.01\%
Frequency	2011.2	$0.033(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.792	+3.38\%
Frequency	2012.1	$0.034(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.762	+3.41\%
Frequency	2012.2	$0.031(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.710	+3.20\%
Frequency	2013.1	$0.029(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.641	+2.91\%
Frequency	2013.2	$0.027(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.002)$	0.558	+2.73\%
Frequency	2014.1	$0.027(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.006)$	0.499	+2.78\%
Frequency	2014.2	$0.037(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.732	+3.75\%
Frequency	2015.1	$0.033(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.003)$	0.638	+3.35\%
Frequency	2015.2	$0.043(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001)$	0.812	+4.37\%
Frequency	2016.1	0.036 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.003$)	0.751	+3.62\%
Frequency	2016.2	$0.033(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.021)$	0.626	+3.37\%

Coverage $=C L$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality, mobility

Fit	Start Date	Time	Seasonality	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.036(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.017 ($\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.680)$	0.010 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.633	+3.62\%
Loss Cost	2004.2	$0.038(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.027(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.515)$	$0.010(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.657	+3.83\%
Loss Cost	2005.1	$0.039(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.018(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.676)$	$0.010(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.667	+4.01\%
Loss Cost	2005.2	$0.041(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.026(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.537)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.680	+4.20\%
Loss Cost	2006.1	$0.044(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.750)$	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.701	+4.46\%
Loss Cost	2006.2	0.045 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.019(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.660)$	$0.011(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.697	+4.60\%
Loss Cost	2007.1	0.047 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.007(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.864)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.710	+4.84\%
Loss Cost	2007.2	$0.051(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.022(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.575)$	$0.012(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.761	+5.24\%
Loss Cost	2008.1	$0.055(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.896)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.797	+5.65\%
Loss Cost	2008.2	$0.058(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.018(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.615)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.830	+6.02\%
Loss Cost	2009.1	$0.063(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.980)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.866	+6.50\%
Loss Cost	2009.2	$0.066(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.009(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.768)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.882	+6.81\%
Loss Cost	2010.1	$0.068(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.000(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=1.000)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.884	+7.07\%
Loss Cost	2010.2	$0.069(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.911$)	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.877	+7.19\%
Loss Cost	2011.1	$0.073(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$-0.008(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.813)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.883	+7.53\%
Loss Cost	2011.2	0.075 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=1.000)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.888	+7.82\%
Loss Cost	2012.1	$0.077(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$-0.007(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.845)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.884	+8.03\%
Loss Cost	2012.2	$0.076(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$-0.010(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.781$)	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.870	+7.90\%
Loss Cost	2013.1	$0.076(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	-0.009 ($\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.814$)	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.856	+7.87\%
Loss Cost	2013.2	$0.074(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$-0.013(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.737)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.841	+7.68\%
Loss Cost	2014.1	$0.076(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$-0.018(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.677)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.832	+7.85\%
Loss Cost	2014.2	$0.077(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$-0.015(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.734)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.824	+7.97\%
Loss Cost	2015.1	$0.072(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.926)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.814	+7.52\%
Loss Cost	2015.2	$0.072(\mathrm{Cl}=+/-0.030 ; p=0.000)$	$-0.007(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.897)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.804	+7.41\%
Loss Cost	2016.1	$0.063(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.002)$	0.015 ($\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.782$)	$0.014(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.816	+6.45\%
Loss Cost	2016.2	$0.057(\mathrm{Cl}=+/-0.036 ; p=0.006)$	$0.002(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.974)$	$0.014(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.825	+5.85\%
Severity	2004.1	$0.037(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.046(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.011)$	$-0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.083)$	0.946	+3.80\%
Severity	2004.2	$0.038(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.050(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.006$)	$-0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.099)$	0.947	+3.88\%
Severity	2005.1	$0.039(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.046(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.012)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.134)$	0.947	+3.96\%
Severity	2005.2	0.040 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.049 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.007$)	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.159)$	0.947	+4.03\%
Severity	2006.1	$0.041(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.042(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.016)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.235)$	0.954	+4.19\%
Severity	2006.2	$0.042(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.046(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.007)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.279)$	0.956	+4.30\%
Severity	2007.1	$0.043(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.043(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.013)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.348)$	0.955	+4.36\%
Severity	2007.2	$0.044(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.046(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.008)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.404)$	0.955	+4.46\%
Severity	2008.1	$0.045(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.017)$	$-0.001(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.538)$	0.956	+4.58\%
Severity	2008.2	$0.046(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.046(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.007)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.629)$	0.959	+4.71\%
Severity	2009.1	$0.048(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.038(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.016)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.877)$	0.965	+4.90\%
Severity	2009.2	0.049 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.041(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.011)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.954)$	0.963	+4.98\%
Severity	2010.1	0.049 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.039(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.019)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.983)$	0.960	+5.02\%
Severity	2010.2	0.050 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.042(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.013)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.900)$	0.959	+5.12\%
Severity	2011.1	$0.052(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$0.036(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.030)$	$0.000(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.681)$	0.961	+5.30\%
Severity	2011.2	$0.053(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.030 ; p=0.010)$	$0.000(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.531)$	0.965	+5.49\%
Severity	2012.1	$0.056(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.033(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.023)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.269)$	0.972	+5.75\%
Severity	2012.2	$0.058(\mathrm{Cl}=+/-0.005 ; ~ p=0.000)$	$0.039(\mathrm{Cl}=+/-0.026 ; p=0.006)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.157)$	0.976	+5.96\%
Severity	2013.1	$0.060(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.031(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.012)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.047)$	0.982	+6.21\%
Severity	2013.2	$0.062(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.035(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.005)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.028)$	0.982	+6.36\%
Severity	2014.1	$0.064(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.029(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.011$)	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.008)$	0.985	+6.59\%
Severity	2014.2	$0.063(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.028(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.019)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.011$)	0.982	+6.56\%
Severity	2015.1	$0.064(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$0.027(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.032)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.016)$	0.978	+6.58\%
Severity	2015.2	$0.063(\mathrm{Cl}=+/-0.007 ; ~ p=0.000)$	$0.026(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.053)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.020)$	0.973	+6.50\%
Severity	2016.1	$0.061(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.029(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.042)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.033)$	0.968	+6.33\%
Severity	2016.2	$0.061(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.028(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.068)$	$0.001(\mathrm{Cl}=+/-0.001 ; \mathrm{p}=0.042)$	0.958	+6.27\%
Frequency	2004.1	$-0.002(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.593)$	$-0.029(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.336)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.661	-0.17\%
Frequency	2004.2	$0.000(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.888)$	$-0.023(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.444)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.665	-0.05\%
Frequency	2005.1	$0.001(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.867)$	$-0.028(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.352)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.668	+0.06\%
Frequency	2005.2	$0.002(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.642)$	$-0.023(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.444)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.670	+0.16\%
Frequency	2006.1	$0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.482)$	$-0.028(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.364)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.673	+0.26\%
Frequency	2006.2	$0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.470)$	$-0.027(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.395)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.671	+0.29\%
Frequency	2007.1	$0.005(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.273)$	$-0.036(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.275)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.682	+0.46\%
Frequency	2007.2	$0.007(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.068)$	$-0.024(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.425)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.721	+0.75\%
Frequency	2008.1	$0.010(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.016)$	$-0.036(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.221)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.751	+1.02\%
Frequency	2008.2	$0.012(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.004)$	$-0.028(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.328)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.775	+1.25\%
Frequency	2009.1	0.015 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.001$)	$-0.039(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.162)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.802	+1.53\%
Frequency	2009.2	$0.017(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$-0.032(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.243)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.821	+1.75\%
Frequency	2010.1	0.019 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$-0.039(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.157)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.832	+1.95\%
Frequency	2010.2	$0.019(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$-0.039(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.179)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.831	+1.96\%
Frequency	2011.1	$0.021(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.001)$	-0.044 ($\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.144$)	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.835	+2.11\%
Frequency	2011.2	$0.022(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.001)$	-0.041 ($\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.182)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.835	+2.20\%
Frequency	2012.1	$0.021(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.003)$	$-0.040(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.224)$	0.015 ($\mathrm{Cl}=+/-0.003 ; p=0.000)$	0.834	+2.15\%
Frequency	2012.2	$0.018(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.010)$	$-0.048(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.140)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.850	+1.84\%
Frequency	2013.1	0.015 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.039)$	$-0.040(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.236)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.856	+1.56\%
Frequency	2013.2	$0.012(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.107)$	$-0.048(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.161)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.869	+1.24\%
Frequency	2014.1	$0.012(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.175)$	$-0.046(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.207)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.867	+1.18\%
Frequency	2014.2	$0.013(\mathrm{Cl}=+/-0.020 ; p=0.169)$	$-0.043(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.262)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.864	+1.32\%
Frequency	2015.1	$0.009(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.403)$	$-0.032(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.426)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.872	+0.88\%
Frequency	2015.2	$0.009(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.464)$	$-0.032(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.451)$	$0.014(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.867	+0.86\%
Frequency	2016.1	$0.001(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.926)$	$-0.015(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.733)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.883	+0.12\%
Frequency	2016.2	$-0.004(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.768$)	-0.026 ($\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.556$)	0.013 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.894	-0.40\%

CM - Theft

Coverage $=C M$ - Theft
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.031(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.052$)	$0.127(\mathrm{Cl}=+/-0.341 ; \mathrm{p}=0.454)$	0.070	+3.13\%
Loss Cost	2004.2	$0.037(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.023$)	$0.167(\mathrm{Cl}=+/-0.339 ; \mathrm{p}=0.323)$	0.115	+3.80\%
Loss Cost	2005.1	0.043 (Cl $=+/-0.033 ; p=0.013)$	$0.135(\mathrm{Cl}=+/-0.343 ; \mathrm{p}=0.430)$	0.141	+4.35\%
Loss Cost	2005.2	0.049 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.007$)	$0.171(\mathrm{Cl}=+/-0.344 ; \mathrm{p}=0.320)$	0.180	+4.99\%
Loss Cost	2006.1	$0.054(\mathrm{Cl}=+/-0.036 ; p=0.004)$	$0.138(\mathrm{Cl}=+/-0.349 ; \mathrm{p}=0.427)$	0.207	+5.58\%
Loss Cost	2006.2	$0.062(\mathrm{Cl}=+/-0.036 ; p=0.002)$	0.180 ($\mathrm{Cl}=+/-0.347 ; \mathrm{p}=0.298$)	0.259	+6.40\%
Loss Cost	2007.1	$0.071(\mathrm{Cl}=+/-0.037 ; p=0.001)$	$0.133(\mathrm{Cl}=+/-0.346 ; \mathrm{p}=0.437)$	0.309	+7.31\%
Loss Cost	2007.2	$0.081(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.186(\mathrm{Cl}=+/-0.337 ; \mathrm{p}=0.267$)	0.383	+8.42\%
Loss Cost	2008.1	$0.091(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.133(\mathrm{Cl}=+/-0.331 ; \mathrm{p}=0.418)$	0.445	+9.55\%
Loss Cost	2008.2	$0.102(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.185(\mathrm{Cl}=+/-0.322 ; \mathrm{p}=0.248)$	0.511	+10.74\%
Loss Cost	2009.1	0.112 ($\mathrm{Cl}=+/-0.039 ; p=0.000)$	$0.135(\mathrm{Cl}=+/-0.317 ; \mathrm{p}=0.390$)	0.560	+11.90\%
Loss Cost	2009.2	0.125 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000$)	$0.189(\mathrm{Cl}=+/-0.305 ; \mathrm{p}=0.212)$	0.622	+13.27\%
Loss Cost	2010.1	0.138 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000$)	$0.129(\mathrm{Cl}=+/-0.291 ; \mathrm{p}=0.368)$	0.685	+14.80\%
Loss Cost	2010.2	0.149 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000$)	$0.175(\mathrm{Cl}=+/-0.284 ; \mathrm{p}=0.214)$	0.719	+16.08\%
Loss Cost	2011.1	0.160 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000$)	$0.130(\mathrm{Cl}=+/-0.281 ; \mathrm{p}=0.347)$	0.746	+17.34\%
Loss Cost	2011.2	$0.173(\mathrm{Cl}=+/-0.040 ; p=0.000)$	$0.182(\mathrm{Cl}=+/-0.268 ; \mathrm{p}=0.173)$	0.785	+18.93\%
Loss Cost	2012.1	$0.187(\mathrm{Cl}=+/-0.040 ; p=0.000)$	$0.127(\mathrm{Cl}=+/-0.256 ; \mathrm{p}=0.311$)	0.820	+20.62\%
Loss Cost	2012.2	$0.201(\mathrm{Cl}=+/-0.040 ; p=0.000)$	$0.176(\mathrm{Cl}=+/-0.243 ; \mathrm{p}=0.146)$	0.848	+22.30\%
Loss Cost	2013.1	0.213 ($\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000$)	$0.136(\mathrm{Cl}=+/-0.242 ; \mathrm{p}=0.253)$	0.860	+23.70\%
Loss Cost	2013.2	0.226 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000$)	$0.179(\mathrm{Cl}=+/-0.234 ; \mathrm{p}=0.124)$	0.876	+25.39\%
Loss Cost	2014.1	$0.239(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000)$	$0.138(\mathrm{Cl}=+/-0.232 ; \mathrm{p}=0.225)$	0.887	+27.03\%
Loss Cost	2014.2	0.256 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000$)	$0.186(\mathrm{Cl}=+/-0.215 ; \mathrm{p}=0.084)$	0.909	+29.21\%
Loss Cost	2015.1	0.268 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000$)	$0.153(\mathrm{Cl}=+/-0.219 ; \mathrm{p}=0.156)$	0.912	+30.74\%
Loss Cost	2015.2	$0.286(\mathrm{Cl}=+/-0.047 ; ~ p=0.000)$	$0.197(\mathrm{Cl}=+/-0.204 ; \mathrm{p}=0.057)$	0.926	+33.09\%
Loss Cost	2016.1	$0.306(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	$0.147(\mathrm{Cl}=+/-0.190 ; \mathrm{p}=0.116)$	0.943	+35.79\%
Loss Cost	2016.2	$0.317(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.000)$	$0.172(\mathrm{Cl}=+/-0.196 ; \mathrm{p}=0.079)$	0.939	+37.37\%
Severity	2004.1	$0.077(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.026(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.555$)	0.910	+8.00\%
Severity	2004.2	0.078 (Cl $=+/-0.008 ; p=0.000)$	0.035 ($\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.426$)	0.910	+8.17\%
Severity	2005.1	0.079 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.032(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.489)$	0.905	+8.23\%
Severity	2005.2	$0.081(\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.042(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.353)$	0.907	+8.43\%
Severity	2006.1	$0.082(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.035(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.452)$	0.905	+8.57\%
Severity	2006.2	$0.084(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.045(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.338)$	0.905	+8.77\%
Severity	2007.1	$0.086(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.033(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.480)$	0.908	+9.00\%
Severity	2007.2	$0.089(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.045(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.328)$	0.911	+9.26\%
Severity	2008.1	$0.092(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.028(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.521$)	0.920	+9.62\%
Severity	2008.2	$0.094(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.040 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.356$)	0.923	+9.89\%
Severity	2009.1	0.096 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.032(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.472)$	0.921	+10.08\%
Severity	2009.2	$0.097(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.036(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.430)$	0.915	+10.19\%
Severity	2010.1	0.099 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	$0.029(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.540)$	0.910	+10.37\%
Severity	2010.2	$0.100(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.036(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.463)$	0.905	+10.55\%
Severity	2011.1	$0.104(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.022(\mathrm{Cl}=+/-0.100 ; p=0.650)$	0.907	+10.91\%
Severity	2011.2	$0.107(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.037(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.446)$	0.911	+11.33\%
Severity	2012.1	0.112 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.020 ($\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.673$)	0.918	+11.82\%
Severity	2012.2	$0.114(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.028(\mathrm{Cl}=+/-0.100 ; \mathrm{p}=0.558)$	0.913	+12.10\%
Severity	2013.1	0.118 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.016(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.741$)	0.911	+12.48\%
Severity	2013.2	0.122 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$0.030(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.543$)	0.912	+12.98\%
Severity	2014.1	0.126 ($\mathrm{Cl}=+/-0.020 ; p=0.000$)	$0.017(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.744$)	0.911	+13.47\%
Severity	2014.2	0.135 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$0.041(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.362)$	0.934	+14.47\%
Severity	2015.1	0.140 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000$)	$0.027(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.555$)	0.934	+15.05\%
Severity	2015.2	0.149 ($\mathrm{Cl}=+/-0.020 ; p=0.000$)	$0.048(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.246)$	0.949	+16.04\%
Severity	2016.1	0.160 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.021(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.517$)	0.972	+17.34\%
Severity	2016.2	$0.167(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.037(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.190)$	0.979	+18.23\%
Frequency	2004.1	$-0.046(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.101(\mathrm{Cl}=+/-0.262 ; \mathrm{p}=0.438)$	0.272	-4.52\%
Frequency	2004.2	$-0.041(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.002)$	$0.132(\mathrm{Cl}=+/-0.260 ; p=0.311)$	0.232	-4.04\%
Frequency	2005.1	$-0.037(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.006)$	$0.103(\mathrm{Cl}=+/-0.262 ; \mathrm{p}=0.428)$	0.170	-3.59\%
Frequency	2005.2	$-0.032(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.017)$	$0.128(\mathrm{Cl}=+/-0.264 ; \mathrm{p}=0.329)$	0.135	-3.18\%
Frequency	2006.1	$-0.028(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.045)$	$0.103(\mathrm{Cl}=+/-0.267 ; \mathrm{p}=0.438)$	0.079	-2.75\%
Frequency	2006.2	$-0.022(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.118)$	$0.136(\mathrm{Cl}=+/-0.266 ; \mathrm{p}=0.306)$	0.050	-2.18\%
Frequency	2007.1	$-0.016(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.275)$	$0.101(\mathrm{Cl}=+/-0.265 ; \mathrm{p}=0.445$)	-0.008	-1.55\%
Frequency	2007.2	$-0.008(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.588)$	$0.141(\mathrm{Cl}=+/-0.259 ; p=0.273)$	-0.015	-0.77\%
Frequency	2008.1	$-0.001(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.967$)	$0.104(\mathrm{Cl}=+/-0.257 ; \mathrm{p}=0.412)$	-0.047	-0.06\%
Frequency	2008.2	$0.008(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.600)$	$0.145(\mathrm{Cl}=+/-0.250 ; \mathrm{p}=0.245)$	-0.011	+0.78\%
Frequency	2009.1	$0.016(\mathrm{Cl}=+/-0.030 ; p=0.276)$	$0.103(\mathrm{Cl}=+/-0.245 ; \mathrm{p}=0.395)$	0.004	+1.65\%
Frequency	2009.2	$0.028(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.062)$	$0.153(\mathrm{Cl}=+/-0.226 ; \mathrm{p}=0.175)$	0.127	+2.80\%
Frequency	2010.1	$0.039(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.007$)	$0.100(\mathrm{Cl}=+/-0.207 ; ~ p=0.327)$	0.246	+4.02\%
Frequency	2010.2	0.049 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.001$)	$0.139(\mathrm{Cl}=+/-0.195 ; \mathrm{p}=0.153)$	0.371	+5.00\%
Frequency	2011.1	$0.056(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	$0.108(\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.259)$	0.436	+5.80\%
Frequency	2011.2	$0.066(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	$0.145(\mathrm{Cl}=+/-0.183 ; \mathrm{p}=0.114)$	0.539	+6.82\%
Frequency	2012.1	$0.076(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	$0.107(\mathrm{Cl}=+/-0.174 ; \mathrm{p}=0.213$)	0.621	+7.87\%
Frequency	2012.2	$0.087(\mathrm{Cl}=+/-0.026 ; p=0.000)$	$0.147(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.063)$	0.724	+9.10\%
Frequency	2013.1	0.095 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000$)	$0.119(\mathrm{Cl}=+/-0.154 ; \mathrm{p}=0.120)$	0.759	+9.97\%
Frequency	2013.2	$0.104(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000$)	0.149 ($\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.047$)	0.798	+10.98\%
Frequency	2014.1	0.113 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000$)	$0.121(\mathrm{Cl}=+/-0.144 ; \mathrm{p}=0.092)$	0.825	+11.95\%
Frequency	2014.2	$0.121(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	$0.145(\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.046)$	0.840	+12.88\%
Frequency	2015.1	0.128 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000$)	0.126 ($\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.087$)	0.845	+13.64\%
Frequency	2015.2	$0.137(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	$0.149(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.046)$	0.854	+14.69\%
Frequency	2016.1	0.146 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000$)	$0.126(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.092)$	0.861	+15.72\%
Frequency	2016.2	0.150 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000$)	0.135 ($\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.095$)	0.834	+16.18\%

CM - Theft

Coverage $=C M$ - Theft
End Trend Period = 2022.2
Excluded Points = NA
Parameters Included: time

Fit	Start Date	Time	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.031(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.047)$	0.081	+3.18\%
Loss Cost	2004.2	$0.037(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.023)$	0.115	+3.80\%
Loss Cost	2005.1	0.043 ($\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.011$)	0.150	+4.41\%
Loss Cost	2005.2	0.049 ($\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.006$)	0.180	+4.99\%
Loss Cost	2006.1	0.055 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.003$)	0.216	+5.66\%
Loss Cost	2006.2	0.062 ($\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.002$)	0.256	+6.40\%
Loss Cost	2007.1	$0.071(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.000)$	0.318	+7.40\%
Loss Cost	2007.2	$0.081(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	0.377	+8.42\%
Loss Cost	2008.1	$0.092(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	0.451	+9.65\%
Loss Cost	2008.2	$0.102(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	0.503	+10.74\%
Loss Cost	2009.1	$0.113(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	0.564	+12.02\%
Loss Cost	2009.2	0.125 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000$)	0.613	+13.27\%
Loss Cost	2010.1	$0.139(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	0.687	+14.93\%
Loss Cost	2010.2	0.149 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000$)	0.712	+16.08\%
Loss Cost	2011.1	$0.161(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	0.747	+17.50\%
Loss Cost	2011.2	0.173 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	0.775	+18.93\%
Loss Cost	2012.1	$0.189(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	0.819	+20.81\%
Loss Cost	2012.2	$0.201(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	0.838	+22.30\%
Loss Cost	2013.1	0.215 ($\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000$)	0.857	+23.95\%
Loss Cost	2013.2	$0.226(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	0.864	+25.39\%
Loss Cost	2014.1	$0.242(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000)$	0.883	+27.35\%
Loss Cost	2014.2	0.256 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	0.894	+29.21\%
Loss Cost	2015.1	$0.272(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000)$	0.904	+31.21\%
Loss Cost	2015.2	$0.286(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.000)$	0.907	+33.09\%
Loss Cost	2016.1	0.310 ($\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.000$)	0.934	+36.41\%
Loss Cost	2016.2	$0.317(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.000)$	0.924	+37.37\%
Severity	2004.1	$0.077(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.911	+8.01\%
Severity	2004.2	0.078 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.911	+8.17\%
Severity	2005.1	$0.079(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.907	+8.25\%
Severity	2005.2	0.081 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.907	+8.43\%
Severity	2006.1	$0.082(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.906	+8.59\%
Severity	2006.2	$0.084(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.905	+8.77\%
Severity	2007.1	$0.086(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.909	+9.02\%
Severity	2007.2	$0.089(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.911	+9.26\%
Severity	2008.1	$0.092(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.922	+9.64\%
Severity	2008.2	$0.094(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.924	+9.89\%
Severity	2009.1	$0.096(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.923	+10.11\%
Severity	2009.2	$0.097(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.916	+10.19\%
Severity	2010.1	$0.099(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.913	+10.39\%
Severity	2010.2	$0.100(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.906	+10.55\%
Severity	2011.1	$0.104(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.910	+10.93\%
Severity	2011.2	$0.107(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.913	+11.33\%
Severity	2012.1	0.112 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.921	+11.85\%
Severity	2012.2	$0.114(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.916	+12.10\%
Severity	2013.1	0.118 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	0.915	+12.51\%
Severity	2013.2	$0.122(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.915	+12.98\%
Severity	2014.1	$0.127(\mathrm{Cl}=+/-0.020 ; p=0.000)$	0.916	+13.51\%
Severity	2014.2	$0.135(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.935	+14.47\%
Severity	2015.1	0.141 ($\mathrm{Cl}=+/-0.020 ; p=0.000$)	0.937	+15.12\%
Severity	2015.2	0.149 ($\mathrm{Cl}=+/-0.020 ; p=0.000$)	0.947	+16.04\%
Severity	2016.1	$0.161(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.973	+17.42\%
Severity	2016.2	$0.167(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.978	+18.23\%
Frequency	2004.1	$-0.046(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.280	-4.47\%
Frequency	2004.2	-0.041 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.002)$	0.230	-4.04\%
Frequency	2005.1	$-0.036(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.006)$	0.179	-3.55\%
Frequency	2005.2	$-0.032(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.017)$	0.136	-3.18\%
Frequency	2006.1	$-0.027(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.047)$	0.090	-2.70\%
Frequency	2006.2	$-0.022(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.118)$	0.047	-2.18\%
Frequency	2007.1	-0.015 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.289)$	0.005	-1.49\%
Frequency	2007.2	$-0.008(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.589)$	-0.024	-0.77\%
Frequency	2008.1	$0.000(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.995$)	-0.036	+0.01\%
Frequency	2008.2	$0.008(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.602)$	-0.026	+0.78\%
Frequency	2009.1	$0.017(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.250)$	0.014	+1.73\%
Frequency	2009.2	0.028 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.066$)	0.094	+2.80\%
Frequency	2010.1	0.040 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.006$)	0.246	+4.11\%
Frequency	2010.2	0.049 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.001$)	0.339	+5.00\%
Frequency	2011.1	$0.057(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.427	+5.92\%
Frequency	2011.2	$0.066(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.501	+6.82\%
Frequency	2012.1	$0.077(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.608	+8.01\%
Frequency	2012.2	$0.087(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.681	+9.10\%
Frequency	2013.1	$0.097(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.736	+10.17\%
Frequency	2013.2	$0.104(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.755	+10.98\%
Frequency	2014.1	0.115 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000$)	0.801	+12.20\%
Frequency	2014.2	$0.121(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	0.800	+12.88\%
Frequency	2015.1	$0.131(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	0.818	+13.97\%
Frequency	2015.2	$0.137(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	0.810	+14.69\%
Frequency	2016.1	$0.150(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	0.833	+16.17\%
Frequency	2016.2	$0.150(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	0.798	+16.18\%

CM - Theft

Coverage $=$ CM - Theft
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, scalar_level_change, trend_level_change
Scalar Level Change Start Date $=2021-07-01$
Future Trend Start Date $=2016$-01-01

Fit	Start Date	Time	Scalar Shift	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2004.1	$-0.086(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.473 ($\mathrm{Cl}=+/-0.198 ; \mathrm{p}=0.000$)	$0.327(\mathrm{Cl}=+/-0.037 ; p=0.000)$	0.954	-8.26\%	+27.29\%
Loss Cost	2004.2	$-0.085(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.476(\mathrm{Cl}=+/-0.200 ; p=0.000)$	0.325 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000$)	0.954	-8.13\%	+27.16\%
Loss Cost	2005.1	$-0.084(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.477(\mathrm{Cl}=+/-0.203 ; \mathrm{p}=0.000)$	$0.324(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	0.954	-8.10\%	+27.12\%
Loss Cost	2005.2	$-0.086(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.474(\mathrm{Cl}=+/-0.206 ; \mathrm{p}=0.000)$	$0.327(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	0.954	-8.22\%	+27.25\%
Loss Cost	2006.1	$-0.086(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.473(\mathrm{Cl}=+/-0.210 ; \mathrm{p}=0.000)$	$0.328(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	0.953	-8.27\%	+27.29\%
Loss Cost	2006.2	$-0.086(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.473(\mathrm{Cl}=+/-0.214 ; \mathrm{p}=0.000)$	$0.328(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000)$	0.953	-8.27\%	+27.29\%
Loss Cost	2007.1	-0.082 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000$)	$0.481(\mathrm{Cl}=+/-0.212 ; \mathrm{p}=0.000)$	0.320 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	0.956	-7.83\%	+26.93\%
Loss Cost	2007.2	-0.077 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.487(\mathrm{Cl}=+/-0.212 ; \mathrm{p}=0.000)$	$0.313(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000)$	0.957	-7.42\%	+26.62\%
Loss Cost	2008.1	-0.068 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	$0.499(\mathrm{Cl}=+/-0.201 ; \mathrm{p}=0.000)$	$0.300(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000)$	0.963	-6.61\%	+26.07\%
Loss Cost	2008.2	$-0.064(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.504(\mathrm{Cl}=+/-0.203 ; \mathrm{p}=0.000$)	$0.294(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.000)$	0.964	-6.24\%	+25.84\%
Loss Cost	2009.1	$-0.057(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$0.512(\mathrm{Cl}=+/-0.200 ; p=0.000)$	$0.284(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.000)$	0.966	-5.54\%	+25.44\%
Loss Cost	2009.2	-0.052 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001$)	$0.518(\mathrm{Cl}=+/-0.202 ; \mathrm{p}=0.000)$	$0.276(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.000)$	0.967	-5.03\%	+25.18\%
Loss Cost	2010.1	$-0.034(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.022)$	$0.534(\mathrm{Cl}=+/-0.178 ; \mathrm{p}=0.000)$	$0.253(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	0.976	-3.36\%	+24.42\%
Loss Cost	2010.2	$-0.036(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.038)$	$0.533(\mathrm{Cl}=+/-0.183 ; \mathrm{p}=0.000)$	$0.255(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.000)$	0.975	-3.50\%	+24.48\%
Loss Cost	2011.1	-0.030 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.121$)	$0.536(\mathrm{Cl}=+/-0.187 ; \mathrm{p}=0.000)$	$0.248(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.000)$	0.975	-2.98\%	+24.30\%
Loss Cost	2011.2	$-0.028(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.223)$	$0.538(\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.000)$	$0.245(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.000)$	0.975	-2.77\%	+24.23\%
Loss Cost	2012.1	$-0.007(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.784)$	$0.549(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.000)$	$0.220(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.000)$	0.977	-0.71\%	+23.72\%
Loss Cost	2012.2	$-0.008(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.815$)	$0.548(\mathrm{Cl}=+/-0.195 ; \mathrm{p}=0.000)$	$0.220(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.000)$	0.976	-0.75\%	+23.73\%
Loss Cost	2013.1	$-0.005(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.913$)	$0.550(\mathrm{Cl}=+/-0.202 ; \mathrm{p}=0.000$)	$0.217(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.001)$	0.975	-0.45\%	+23.68\%
Loss Cost	2013.2	$-0.031(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.573)$	$0.543(\mathrm{Cl}=+/-0.207 ; \mathrm{p}=0.000)$	$0.246(\mathrm{Cl}=+/-0.139 ; \mathrm{p}=0.002)$	0.974	-3.06\%	+24.00\%
Loss Cost	2014.1	$-0.028(\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.726)$	$0.543(\mathrm{Cl}=+/-0.216 ; \mathrm{p}=0.000)$	$0.243(\mathrm{Cl}=+/-0.191 ; \mathrm{p}=0.017)$	0.972	-2.76\%	+23.97\%
Loss Cost	2014.2	$-0.057(\mathrm{Cl}=+/-0.278 ; \mathrm{p}=0.663)$	0.540 ($\mathrm{Cl}=+/-0.227 ; ~ p=0.000$)	0.273 ($\mathrm{Cl}=+/-0.300 ; p=0.071$)	0.970	-5.57\%	+24.12\%
Loss Cost	2015.1	-0.092 ($\mathrm{Cl}=+/-0.605 ; \mathrm{p}=0.747$)	$0.539(\mathrm{Cl}=+/-0.239 ; \mathrm{p}=0.000)$	$0.308(\mathrm{Cl}=+/-0.624 ; \mathrm{p}=0.303)$	0.968	-8.74\%	+24.19\%
Loss Cost	2015.2	$0.217(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	$0.539(\mathrm{Cl}=+/-0.239 ; \mathrm{p}=0.000)$	$N A(C l e+/-N A ; p=N A)$	0.967	+24.19\%	+24.19\%
Loss Cost	2016.1	0.242 ($\mathrm{Cl}=+/-0.039 ; p=0.000)$	$0.471(\mathrm{Cl}=+/-0.194 ; \mathrm{p}=0.000)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.980	+27.40\%	+27.40\%
Loss Cost	2016.2	$0.238(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.000)$	$0.481(\mathrm{Cl}=+/-0.213 ; \mathrm{p}=0.001)$	$N A(C l e+/-N A ; p=N A)$	0.976	+26.90\%	+26.90\%
Severity	2004.1	$0.051(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.182(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.001$)	$0.069(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.983	+5.18\%	+12.67\%
Severity	2004.2	$0.051(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.182(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.001)$	$0.068(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.982	+5.22\%	+12.64\%
Severity	2005.1	$0.050(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.180(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.001$)	$0.070(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.982	+5.09\%	+12.75\%
Severity	2005.2	0.050 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.181(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.001)$	$0.069(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.981	+5.16\%	+12.70\%
Severity	2006.1	$0.050(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.181(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.002)$	$0.069(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.980	+5.15\%	+12.70\%
Severity	2006.2	0.050 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.181(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.002)$	$0.069(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.979	+5.14\%	+12.71\%
Severity	2007.1	$0.052(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.183(\mathrm{Cl}=+/-0.109 ; p=0.002)$	0.067 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000$)	0.979	+5.32\%	+12.60\%
Severity	2007.2	$0.053(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.185 ($\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.002$)	0.065 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000$)	0.978	+5.43\%	+12.53\%
Severity	2008.1	$0.057(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.191(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.001$)	$0.058(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	0.980	+5.91\%	+12.27\%
Severity	2008.2	$0.059(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.193(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.001$)	$0.057(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.979	+6.04\%	+12.21\%
Severity	2009.1	$0.058(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.192(\mathrm{Cl}=+/-0.110 ; p=0.001)$	$0.057(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.978	+6.02\%	+12.22\%
Severity	2009.2	$0.053(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.187(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.001)$	$0.064(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.978	+5.45\%	+12.45\%
Severity	2010.1	$0.050(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.184(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.002)$	$0.068(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	0.977	+5.17\%	+12.56\%
Severity	2010.2	$0.044(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.179(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.002$)	$0.077(\mathrm{Cl}=+/-0.033 ; p=0.000)$	0.977	+4.47\%	+12.79\%
Severity	2011.1	$0.044(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.001$)	$0.179(\mathrm{Cl}=+/-0.109 ; p=0.003)$	$0.076(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	0.976	+4.53\%	+12.77\%
Severity	2011.2	$0.044(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.003)$	$0.179(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.003)$	$0.076(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.001)$	0.974	+4.50\%	+12.78\%
Severity	2012.1	$0.049(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.006)$	$0.182(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.004)$	$0.071(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.005)$	0.973	+4.97\%	+12.68\%
Severity	2012.2	$0.035(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.075)$	$0.176(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.005)$	$0.087(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.003)$	0.972	+3.56\%	+12.92\%
Severity	2013.1	$0.024(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.323)$	$0.172(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.006)$	$0.099(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.004)$	0.971	+2.41\%	+13.09\%
Severity	2013.2	$0.005(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.872)$	$0.167(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.008)$	$0.120(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.005)$	0.970	+0.51\%	+13.29\%
Severity	2014.1	$-0.032(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.464)$	$0.161(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.010$)	$0.159(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.005$)	0.970	-3.13\%	+13.56\%
Severity	2014.2	$-0.020(\mathrm{Cl}=+/-0.150 ; \mathrm{p}=0.777)$	$0.162(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.013)$	$0.147(\mathrm{Cl}=+/-0.162 ; \mathrm{p}=0.072)$	0.968	-1.99\%	+13.51\%
Severity	2015.1	$-0.134(\mathrm{Cl}=+/-0.316 ; \mathrm{p}=0.375)$	$0.157(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.018)$	$0.263(\mathrm{Cl}=+/-0.326 ; \mathrm{p}=0.105)$	0.966	-12.54\%	+13.73\%
Severity	2015.2	$0.129(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.157(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.018)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.965	+13.73\%	+13.73\%
Severity	2016.1	$0.144(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.117(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.016)$	$N A(C l e+/-N A ; p=N A)$	0.983	+15.43\%	+15.43\%
Severity	2016.2	$0.151(\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.098(\mathrm{Cl}=+/-0.087 ; p=0.031)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.985	+16.34\%	+16.34\%
Frequency	2004.1	$-0.137(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.292(\mathrm{Cl}=+/-0.180 ; p=0.002)$	$0.259(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	0.950	-12.78\%	+12.97\%
Frequency	2004.2	$-0.136(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.294(\mathrm{Cl}=+/-0.182 ; \mathrm{p}=0.002)$	$0.257(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	0.944	-12.69\%	+12.89\%
Frequency	2005.1	$-0.134(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.297(\mathrm{Cl}=+/-0.184 ; \mathrm{p}=0.002)$	$0.254(\mathrm{Cl}=+/-0.036 ; p=0.000)$	0.937	-12.55\%	+12.75\%
Frequency	2005.2	$-0.136(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.293 ($\mathrm{Cl}=+/-0.185 ; \mathrm{p}=0.003$)	$0.258(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	0.933	-12.73\%	+12.91\%
Frequency	2006.1	$-0.136(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.292(\mathrm{Cl}=+/-0.189 ; \mathrm{p}=0.004)$	$0.258(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	0.926	-12.76\%	+12.94\%
Frequency	2006.2	$-0.137(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.292(\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.004)$	$0.258(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000)$	0.917	-12.76\%	+12.94\%
Frequency	2007.1	$-0.133(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.297(\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.004$)	$0.253(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	0.908	-12.48\%	+12.73\%
Frequency	2007.2	$-0.130(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.302(\mathrm{Cl}=+/-0.195 ; \mathrm{p}=0.004)$	$0.248(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000)$	0.899	-12.19\%	+12.52\%
Frequency	2008.1	-0.126 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000$)	$0.308(\mathrm{Cl}=+/-0.195 ; ~ p=0.003)$	0.242 ($\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000$)	0.891	-11.82\%	+12.29\%
Frequency	2008.2	$-0.123(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.311(\mathrm{Cl}=+/-0.198 ; \mathrm{p}=0.003$)	0.238 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000$)	0.882	-11.58\%	+12.15\%
Frequency	2009.1	-0.115 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000$)	0.320 ($\mathrm{Cl}=+/-0.195 ; \mathrm{p}=0.002$)	0.227 ($\mathrm{Cl}=+/-0.050 ; p=0.000$)	0.878	-10.90\%	+11.78\%
Frequency	2009.2	$-0.105(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	$0.331(\mathrm{Cl}=+/-0.186 ; \mathrm{p}=0.001)$	$0.212(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	0.884	-9.94\%	+11.32\%
Frequency	2010.1	$-0.085(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.349(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.000)$	$0.185(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	0.922	-8.11\%	+10.54\%
Frequency	2010.2	$-0.079(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	$0.354(\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.000$)	$0.178(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000)$	0.923	-7.63\%	+10.37\%
Frequency	2011.1	-0.075 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000$)	$0.357(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.000)$	$0.172(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.000)$	0.924	-7.18\%	+10.22\%
Frequency	2011.2	-0.072 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.001$)	0.359 ($\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.000$)	$0.169(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.000)$	0.924	-6.95\%	+10.16\%
Frequency	2012.1	-0.056 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.014$)	$0.367(\mathrm{Cl}=+/-0.152 ; \mathrm{p}=0.000)$	$0.149(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.000)$	0.932	-5.41\%	+9.80\%
Frequency	2012.2	$-0.043(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.106)$	0.373 ($\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.000$)	$0.134(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.001$)	0.934	-4.16\%	+9.57\%
Frequency	2013.1	$-0.028(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.383)$	$0.378(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.000)$	$0.118(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.010)$	0.936	-2.79\%	+9.37\%
Frequency	2013.2	$-0.036(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.409)$	$0.376(\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.000)$	$0.126(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.026)$	0.933	-3.55\%	+9.45\%
Frequency	2014.1	$0.004(\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.951)$	$0.383(\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.000)$	$0.084(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.239)$	0.935	+0.38\%	+9.17\%
Frequency	2014.2	$-0.037(\mathrm{Cl}=+/-0.210 ; \mathrm{p}=0.708)$	0.378 ($\mathrm{Cl}=+/-0.172 ; \mathrm{p}=0.000$)	$0.127(\mathrm{Cl}=+/-0.227 ; \mathrm{p}=0.250)$	0.931	-3.66\%	+9.34\%
Frequency	2015.1	$0.042(\mathrm{Cl}=+/-0.455 ; \mathrm{p}=0.842)$	$0.382(\mathrm{Cl}=+/-0.180 ; \mathrm{p}=0.001)$	$0.046(\mathrm{Cl}=+/-0.470 ; \mathrm{p}=0.836)$	0.928	+4.34\%	+9.20\%
Frequency	2015.2	$0.088(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.000)$	$0.382(\mathrm{Cl}=+/-0.180 ; p=0.001)$	$N A(C l=+/-N A ; p=N A)$	0.926	+9.20\%	+9.20\%
Frequency	2016.1	$0.099(\mathrm{Cl}=+/-0.037 ; p=0.000)$	$0.354(\mathrm{Cl}=+/-0.182 ; \mathrm{p}=0.001$)	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.932	+10.36\%	+10.36\%
Frequency	2016.2	$0.087(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.001)$	$0.383(\mathrm{Cl}=+/-0.187 ; p=0.001)$	$N A(C l=+/-N A ; p=N A)$	0.928	+9.08\%	+9.08\%

CM- All Other

Coverage $=$ CM - All Other
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time

Fit	Start Date	Time	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.033(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.497	+3.30\%
Loss Cost	2004.2	0.032 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.466	+3.23\%
Loss Cost	2005.1	$0.032(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.453	+3.28\%
Loss Cost	2005.2	$0.031(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.413	+3.13\%
Loss Cost	2006.1	$0.034(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.449	+3.41\%
Loss Cost	2006.2	0.032 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.404	+3.21\%
Loss Cost	2007.1	0.033 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.399	+3.32\%
Loss Cost	2007.2	$0.032(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.360	+3.21\%
Loss Cost	2008.1	$0.032(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.342	+3.26\%
Loss Cost	2008.2	$0.038(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.445	+3.85\%
Loss Cost	2009.1	$0.039(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.431	+3.95\%
Loss Cost	2009.2	0.043 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	0.487	+4.42\%
Loss Cost	2010.1	0.045 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	0.473	+4.55\%
Loss Cost	2010.2	$0.041(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.413	+4.20\%
Loss Cost	2011.1	$0.040(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.001)$	0.366	+4.07\%
Loss Cost	2011.2	$0.044(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.001$)	0.395	+4.50\%
Loss Cost	2012.1	$0.046(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.001)$	0.379	+4.66\%
Loss Cost	2012.2	$0.041(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.006)$	0.300	+4.14\%
Loss Cost	2013.1	0.050 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.002$)	0.403	+5.08\%
Loss Cost	2013.2	$0.043(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.007)$	0.315	+4.44\%
Loss Cost	2014.1	$0.056(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001$)	0.475	+5.75\%
Loss Cost	2014.2	$0.054(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.003)$	0.408	+5.51\%
Loss Cost	2015.1	$0.056(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.006)$	0.385	+5.79\%
Loss Cost	2015.2	$0.048(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.026)$	0.274	+4.95\%
Loss Cost	2016.1	0.048 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.050$)	0.224	+4.96\%
Loss Cost	2016.2	$0.044(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.119)$	0.134	+4.46\%
Severity	2004.1	$0.034(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.593	+3.51\%
Severity	2004.2	$0.033(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.560	+3.36\%
Severity	2005.1	$0.034(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.551	+3.43\%
Severity	2005.2	0.033 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.524	+3.39\%
Severity	2006.1	$0.037(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.588	+3.75\%
Severity	2006.2	$0.037(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.570	+3.78\%
Severity	2007.1	$0.039(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.587	+4.00\%
Severity	2007.2	0.040 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.577	+4.10\%
Severity	2008.1	$0.042(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.587	+4.32\%
Severity	2008.2	$0.047(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.658	+4.81\%
Severity	2009.1	$0.051(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.691	+5.18\%
Severity	2009.2	$0.054(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.716	+5.54\%
Severity	2010.1	$0.057(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.736	+5.91\%
Severity	2010.2	$0.058(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.722	+6.02\%
Severity	2011.1	$0.062(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.738	+6.41\%
Severity	2011.2	$0.064(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.729	+6.62\%
Severity	2012.1	$0.066(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.713	+6.78\%
Severity	2012.2	$0.061(\mathrm{Cl}=+/-0.020 ; p=0.000)$	0.670	+6.26\%
Severity	2013.1	0.068 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000$)	0.730	+7.01\%
Severity	2013.2	$0.063(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.684	+6.53\%
Severity	2014.1	$0.073(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.779	+7.55\%
Severity	2014.2	$0.070(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.737	+7.22\%
Severity	2015.1	$0.074(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.736	+7.69\%
Severity	2015.2	$0.066(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.683	+6.84\%
Severity	2016.1	$0.067(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000)$	0.638	+6.92\%
Severity	2016.2	$0.056(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.002)$	0.548	+5.76\%
Frequency	2004.1	$-0.002(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.558)$	-0.018	-0.20\%
Frequency	2004.2	$-0.001(\mathrm{Cl}=+/-0.007 ; p=0.721)$	-0.025	-0.13\%
Frequency	2005.1	$-0.001(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.698)$	-0.025	-0.14\%
Frequency	2005.2	$-0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.516)$	-0.017	-0.25\%
Frequency	2006.1	$-0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.426)$	-0.011	-0.33\%
Frequency	2006.2	$-0.005(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.193)$	0.024	-0.55\%
Frequency	2007.1	$-0.007(\mathrm{Cl}=+/-0.009 ; p=0.141)$	0.040	-0.65\%
Frequency	2007.2	$-0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.063)$	0.084	-0.85\%
Frequency	2008.1	$-0.010(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.035$)	0.118	-1.02\%
Frequency	2008.2	$-0.009(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.071$)	0.083	-0.92\%
Frequency	2009.1	-0.012 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.028$)	0.142	-1.17\%
Frequency	2009.2	-0.011 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.059)$	0.101	-1.06\%
Frequency	2010.1	$-0.013(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.033)$	0.142	-1.28\%
Frequency	2010.2	$-0.017(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.004$)	0.274	-1.72\%
Frequency	2011.1	-0.022 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.441	-2.20\%
Frequency	2011.2	-0.020 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.001$)	0.371	-1.99\%
Frequency	2012.1	$-0.020(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.003)$	0.335	-1.99\%
Frequency	2012.2	$-0.020(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.006)$	0.301	-1.99\%
Frequency	2013.1	$-0.018(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.019)$	0.228	-1.80\%
Frequency	2013.2	$-0.020(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.021$)	0.232	-1.96\%
Frequency	2014.1	$-0.017(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.064)$	0.148	-1.68\%
Frequency	2014.2	$-0.016(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.113)$	0.103	-1.60\%
Frequency	2015.1	$-0.018(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.121)$	0.103	-1.76\%
Frequency	2015.2	$-0.018(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.171)$	0.073	-1.77\%
Frequency	2016.1	$-0.018(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.220)$	0.049	-1.83\%
Frequency	2016.2	$-0.012(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.458)$	-0.035	-1.23\%

CM- All Other

Coverage $=C M$ - All Other
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, scalar_level_change
Scalar Level Change Start Date $=2022-07-01$

Fit	Start Date	Time	Scalar Shift	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.031(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.175 ($\mathrm{Cl}=+/-0.385 ; \mathrm{p}=0.361$)	0.495	+3.16\%
Loss Cost	2004.2	0.030 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	$0.181(\mathrm{Cl}=+/-0.390 ; p=0.352)$	0.464	+3.07\%
Loss Cost	2005.1	$0.031(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.178(\mathrm{Cl}=+/-0.396 ; \mathrm{p}=0.366)$	0.450	+3.11\%
Loss Cost	2005.2	$0.029(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.188(\mathrm{Cl}=+/-0.399 ; \mathrm{p}=0.344)$	0.411	+2.95\%
Loss Cost	2006.1	0.032 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.172(\mathrm{Cl}=+/-0.394 ; \mathrm{p}=0.381)$	0.446	+3.23\%
Loss Cost	2006.2	0.030 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.184(\mathrm{Cl}=+/-0.395 ; \mathrm{p}=0.349)$	0.402	+3.01\%
Loss Cost	2007.1	$0.031(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.178 ($\mathrm{Cl}=+/-0.402 ; \mathrm{p}=0.371$)	0.396	+3.11\%
Loss Cost	2007.2	$0.029(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.001$)	$0.185(\mathrm{Cl}=+/-0.408 ; \mathrm{p}=0.360)$	0.357	+2.98\%
Loss Cost	2008.1	0.030 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.002$)	$0.184(\mathrm{Cl}=+/-0.417 ; \mathrm{p}=0.374)$	0.338	+3.01\%
Loss Cost	2008.2	0.036 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.154(\mathrm{Cl}=+/-0.390 ; p=0.424)$	0.437	+3.63\%
Loss Cost	2009.1	$0.037(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.150(\mathrm{Cl}=+/-0.399 ; \mathrm{p}=0.447)$	0.423	+3.72\%
Loss Cost	2009.2	$0.041(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.128(\mathrm{Cl}=+/-0.389 ; \mathrm{p}=0.505)$	0.475	+4.21\%
Loss Cost	2010.1	0.042 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000$)	$0.122(\mathrm{Cl}=+/-0.399 ; \mathrm{p}=0.532)$	0.460	+4.34\%
Loss Cost	2010.2	0.039 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.001$)	$0.139(\mathrm{Cl}=+/-0.399 ; \mathrm{p}=0.478)$	0.400	+3.94\%
Loss Cost	2011.1	$0.037(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.004)$	$0.146(\mathrm{Cl}=+/-0.410 ; \mathrm{p}=0.468)$	0.353	+3.77\%
Loss Cost	2011.2	$0.041(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.003)$	$0.129(\mathrm{Cl}=+/-0.413 ; \mathrm{p}=0.523)$	0.378	+4.21\%
Loss Cost	2012.1	0.043 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.005$)	$0.123(\mathrm{Cl}=+/-0.426 ; \mathrm{p}=0.552)$	0.359	+4.36\%
Loss Cost	2012.2	0.037 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.019$)	$0.144(\mathrm{Cl}=+/-0.427 ; \mathrm{p}=0.486)$	0.282	+3.75\%
Loss Cost	2013.1	0.046 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.006$)	$0.111(\mathrm{Cl}=+/-0.409 ; \mathrm{p}=0.575)$	0.380	+4.75\%
Loss Cost	2013.2	0.039 ($\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.024$)	0.135 ($\mathrm{Cl}=+/-0.409 ; \mathrm{p}=0.494$)	0.294	+4.00\%
Loss Cost	2014.1	$0.053(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.004)$	$0.093(\mathrm{Cl}=+/-0.372 ; \mathrm{p}=0.603)$	0.450	+5.40\%
Loss Cost	2014.2	0.050 ($\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.013$)	$0.101(\mathrm{Cl}=+/-0.387 ; ~ p=0.583)$	0.379	+5.09\%
Loss Cost	2015.1	$0.052(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.021)$	$0.094(\mathrm{Cl}=+/-0.407 ; \mathrm{p}=0.624)$	0.350	+5.35\%
Loss Cost	2015.2	0.042 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.077$)	$0.121(\mathrm{Cl}=+/-0.413 ; \mathrm{p}=0.536)$	0.240	+4.32\%
Loss Cost	2016.1	$0.041(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.133)$	$0.123(\mathrm{Cl}=+/-0.440 ; p=0.551)$	0.181	+4.23\%
Loss Cost	2016.2	$0.034(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.275$)	$0.139(\mathrm{Cl}=+/-0.467 ; \mathrm{p}=0.521)$	0.088	+3.50\%
Severity	2004.1	0.033 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	$0.169(\mathrm{Cl}=+/-0.336 ; \mathrm{p}=0.314)$	0.594	+3.37\%
Severity	2004.2	$0.031(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.180(\mathrm{Cl}=+/-0.335 ; \mathrm{p}=0.284)$	0.562	+3.20\%
Severity	2005.1	$0.032(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.176(\mathrm{Cl}=+/-0.341 ; \mathrm{p}=0.301)$	0.552	+3.26\%
Severity	2005.2	$0.032(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.178(\mathrm{Cl}=+/-0.346 ; \mathrm{p}=0.302)$	0.526	+3.22\%
Severity	2006.1	0.035 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.158(\mathrm{Cl}=+/-0.329 ; \mathrm{p}=0.335)$	0.588	+3.58\%
Severity	2006.2	$0.035(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.157(\mathrm{Cl}=+/-0.335 ; p=0.347)$	0.568	+3.60\%
Severity	2007.1	$0.038(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.145(\mathrm{Cl}=+/-0.334 ; \mathrm{p}=0.383)$	0.584	+3.83\%
Severity	2007.2	$0.039(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.140 ($\mathrm{Cl}=+/-0.340 ; p=0.407$)	0.573	+3.93\%
Severity	2008.1	$0.041(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.129(\mathrm{Cl}=+/-0.342 ; \mathrm{p}=0.446)$	0.581	+4.15\%
Severity	2008.2	0.046 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.104(\mathrm{Cl}=+/-0.319 ; \mathrm{p}=0.507)$	0.651	+4.66\%
Severity	2009.1	0.049 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.086(\mathrm{Cl}=+/-0.310 ; \mathrm{p}=0.571$)	0.683	+5.05\%
Severity	2009.2	$0.053(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.070 ($\mathrm{Cl}=+/-0.303 ; \mathrm{p}=0.640$)	0.707	+5.43\%
Severity	2010.1	0.056 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.053(\mathrm{Cl}=+/-0.297 ; \mathrm{p}=0.714)$	0.727	+5.81\%
Severity	2010.2	0.058 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.048(\mathrm{Cl}=+/-0.304 ; \mathrm{p}=0.745)$	0.711	+5.93\%
Severity	2011.1	$0.061(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.032(\mathrm{Cl}=+/-0.301 ; \mathrm{p}=0.826)$	0.726	+6.34\%
Severity	2011.2	$0.064(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.024(\mathrm{Cl}=+/-0.307 ; ~ p=0.873)$	0.715	+6.56\%
Severity	2012.1	0.065 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.017(\mathrm{Cl}=+/-0.316 ; \mathrm{p}=0.909)$	0.698	+6.74\%
Severity	2012.2	0.060 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	$0.038(\mathrm{Cl}=+/-0.310 ; p=0.802)$	0.653	+6.16\%
Severity	2013.1	$0.067(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.291 ; \mathrm{p}=0.940)$	0.714	+6.98\%
Severity	2013.2	$0.062(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.028(\mathrm{Cl}=+/-0.290 ; \mathrm{p}=0.843)$	0.665	+6.43\%
Severity	2014.1	$0.073(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$-0.006(\mathrm{Cl}=+/-0.253 ; \mathrm{p}=0.959)$	0.764	+7.57\%
Severity	2014.2	0.070 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000$)	$0.004(\mathrm{Cl}=+/-0.261 ; \mathrm{p}=0.973$)	0.718	+7.20\%
Severity	2015.1	0.075 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000$)	$-0.010(\mathrm{Cl}=+/-0.266 ; \mathrm{p}=0.938)$	0.716	+7.74\%
Severity	2015.2	$0.065(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.258 ; \mathrm{p}=0.906)$	0.657	+6.77\%
Severity	2016.1	0.066 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.002$)	$0.013(\mathrm{Cl}=+/-0.275 ; \mathrm{p}=0.922)$	0.605	+6.84\%
Severity	2016.2	$0.053(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.010)$	$0.043(\mathrm{Cl}=+/-0.261 ; \mathrm{p}=0.723)$	0.509	+5.46\%
Frequency	2004.1	$-0.002(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.569)$	$0.006(\mathrm{Cl}=+/-0.245 ; \mathrm{p}=0.960)$	-0.047	-0.20\%
Frequency	2004.2	$-0.001(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.733)$	$0.001(\mathrm{Cl}=+/-0.247 ; ~ p=0.991)$	-0.055	-0.13\%
Frequency	2005.1	$-0.001(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.710)$	$0.003(\mathrm{Cl}=+/-0.252 ; \mathrm{p}=0.984)$	-0.056	-0.15\%
Frequency	2005.2	$-0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.526)$	$0.009(\mathrm{Cl}=+/-0.253 ; \mathrm{p}=0.939)$	-0.049	-0.26\%
Frequency	2006.1	$-0.003(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.434)$	$0.014(\mathrm{Cl}=+/-0.256 ; \mathrm{p}=0.911$)	-0.043	-0.34\%
Frequency	2006.2	$-0.006(\mathrm{Cl}=+/-0.009 ; p=0.197)$	$0.027(\mathrm{Cl}=+/-0.248 ; \mathrm{p}=0.823)$	-0.007	-0.57\%
Frequency	2007.1	$-0.007(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.143)$	$0.034(\mathrm{Cl}=+/-0.250 ; \mathrm{p}=0.784)$	0.010	-0.69\%
Frequency	2007.2	$-0.009(\mathrm{Cl}=+/-0.010 ; p=0.064)$	$0.046(\mathrm{Cl}=+/-0.245 ; \mathrm{p}=0.707$)	0.056	-0.91\%
Frequency	2008.1	$-0.011(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.035)$	$0.055(\mathrm{Cl}=+/-0.244 ; \mathrm{p}=0.648)$	0.093	-1.09\%
Frequency	2008.2	$-0.010(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.071$)	$0.050(\mathrm{Cl}=+/-0.248 ; \mathrm{p}=0.683)$	0.054	-0.99\%
Frequency	2009.1	-0.013 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.027$)	$0.063(\mathrm{Cl}=+/-0.242 ; \mathrm{p}=0.595)$	0.117	-1.26\%
Frequency	2009.2	-0.012 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.057)$	$0.058(\mathrm{Cl}=+/-0.247 ; \mathrm{p}=0.631)$	0.073	-1.15\%
Frequency	2010.1	$-0.014(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.031)$	$0.069(\mathrm{Cl}=+/-0.246 ; \mathrm{p}=0.567)$	0.118	-1.39\%
Frequency	2010.2	$-0.019(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.004)$	$0.091(\mathrm{Cl}=+/-0.223 ; \mathrm{p}=0.409)$	0.265	-1.88\%
Frequency	2011.1	-0.024 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.113(\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.235)$	0.453	-2.42\%
Frequency	2011.2	-0.022 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.001$)	$0.105(\mathrm{Cl}=+/-0.194 ; \mathrm{p}=0.272)$	0.379	-2.21\%
Frequency	2012.1	$-0.023(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.002)$	$0.106(\mathrm{Cl}=+/-0.200 ; p=0.283)$	0.342	-2.23\%
Frequency	2012.2	$-0.023(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.004$)	$0.107(\mathrm{Cl}=+/-0.208 ; \mathrm{p}=0.294)$	0.307	-2.26\%
Frequency	2013.1	$-0.021(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.013$)	$0.100(\mathrm{Cl}=+/-0.213 ; \mathrm{p}=0.334)$	0.228	-2.08\%
Frequency	2013.2	$-0.023(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.014$)	$0.108(\mathrm{Cl}=+/-0.219 ; \mathrm{p}=0.313$)	0.236	-2.29\%
Frequency	2014.1	$-0.020(\mathrm{Cl}=+/-0.020 ; p=0.045)$	$0.099(\mathrm{Cl}=+/-0.225 ; \mathrm{p}=0.364)$	0.142	-2.02\%
Frequency	2014.2	$-0.020(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.080)$	$0.097(\mathrm{Cl}=+/-0.236 ; \mathrm{p}=0.391)$	0.089	-1.97\%
Frequency	2015.1	$-0.022(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.084)$	$0.104(\mathrm{Cl}=+/-0.246 ; \mathrm{p}=0.376)$	0.092	-2.21\%
Frequency	2015.2	$-0.023(\mathrm{Cl}=+/-0.030 ; p=0.118)$	$0.106(\mathrm{Cl}=+/-0.260 ; p=0.390)$	0.058	-2.29\%
Frequency	2016.1	$-0.025(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.152)$	$0.110(\mathrm{Cl}=+/-0.277 ; p=0.399)$	0.031	-2.44\%
Frequency	2016.2	-0.019 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.336$)	$0.096(\mathrm{Cl}=+/-0.291 ; \mathrm{p}=0.477)$	-0.080	-1.86\%

CM- All Other

Coverage $=$ CM- All Other
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.032 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.153(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.007$)	0.582	+3.24\%
Loss Cost	2004.2	0.032 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.152(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.009)$	0.552	+3.23\%
Loss Cost	2005.1	0.032 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.153(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.010$)	0.540	+3.20\%
Loss Cost	2005.2	$0.031(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.149 ($\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.014$)	0.500	+3.13\%
Loss Cost	2006.1	$0.033(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.138(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.024)$	0.519	+3.34\%
Loss Cost	2006.2	0.032 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.131 ($\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.035$)	0.470	+3.21\%
Loss Cost	2007.1	$0.032(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.130 ($\mathrm{Cl}=+/-0.126 ; p=0.044$)	0.461	+3.25\%
Loss Cost	2007.2	$0.032(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.128(\mathrm{Cl}=+/-0.130 ; p=0.054)$	0.421	+3.21\%
Loss Cost	2008.1	$0.031(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.130(\mathrm{Cl}=+/-0.135 ; \mathrm{p}=0.058)$	0.404	+3.17\%
Loss Cost	2008.2	$0.038(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.162(\mathrm{Cl}=+/-0.120 ; p=0.010)$	0.555	+3.85\%
Loss Cost	2009.1	0.037 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.163 ($\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.013$)	0.541	+3.82\%
Loss Cost	2009.2	$0.043(\mathrm{Cl}=+/-0.015 ; p=0.000)$	$0.189(\mathrm{Cl}=+/-0.115 ; p=0.002)$	0.638	+4.42\%
Loss Cost	2010.1	$0.043(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.191(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.003$)	0.626	+4.38\%
Loss Cost	2010.2	$0.041(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.184(\mathrm{Cl}=+/-0.125 ; p=0.006)$	0.570	+4.20\%
Loss Cost	2011.1	$0.038(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.198(\mathrm{Cl}=+/-0.127 ; p=0.004)$	0.557	+3.86\%
Loss Cost	2011.2	$0.044(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.222(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.001)$	0.633	+4.50\%
Loss Cost	2012.1	0.043 ($\mathrm{Cl}=+/-0.020 ; p=0.000$)	$0.227(\mathrm{Cl}=+/-0.127 ; p=0.001)$	0.622	+4.37\%
Loss Cost	2012.2	$0.041(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.001)$	$0.219(\mathrm{Cl}=+/-0.133 ; p=0.003)$	0.557	+4.14\%
Loss Cost	2013.1	0.047 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.001$)	$0.198(\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.006$)	0.600	+4.77\%
Loss Cost	2013.2	0.043 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.002$)	$0.188(\mathrm{Cl}=+/-0.139 ; \mathrm{p}=0.011$)	0.520	+4.44\%
Loss Cost	2014.1	$0.053(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$0.158(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.022)$	0.609	+5.43\%
Loss Cost	2014.2	$0.054(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001$)	0.160 ($\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.029$)	0.554	+5.51\%
Loss Cost	2015.1	$0.052(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.005$)	$0.164(\mathrm{Cl}=+/-0.153 ; p=0.037)$	0.531	+5.38\%
Loss Cost	2015.2	$0.048(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.016$)	$0.153(\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.062$)	0.419	+4.95\%
Loss Cost	2016.1	0.043 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.052$)	0.166 ($\mathrm{Cl}=+/-0.176 ; \mathrm{p}=0.062$)	0.391	+4.43\%
Loss Cost	2016.2	$0.044(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.088)$	0.166 ($\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.084$)	0.304	+4.46\%
Severity	2004.1	$0.034(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.161(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.001)$	0.698	+3.44\%
Severity	2004.2	0.033 (Cl = +/-0.009; p = 0.000)	0.156 ($\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.001$)	0.666	+3.36\%
Severity	2005.1	0.033 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.157(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.002$)	0.657	+3.35\%
Severity	2005.2	$0.033(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.159 ($\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.002$)	0.637	+3.39\%
Severity	2006.1	$0.036(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.143(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.004)$	0.676	+3.67\%
Severity	2006.2	0.037 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	0.149 ($\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.004$)	0.666	+3.78\%
Severity	2007.1	$0.038(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.142 ($\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.006$)	0.670	+3.92\%
Severity	2007.2	0.040 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.151(\mathrm{Cl}=+/-0.100 ; p=0.004)$	0.673	+4.10\%
Severity	2008.1	$0.041(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.145 ($\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.008$)	0.673	+4.22\%
Severity	2008.2	$0.047(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.173(\mathrm{Cl}=+/-0.087 ; p=0.000)$	0.784	+4.81\%
Severity	2009.1	0.049 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.162(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.001$)	0.797	+5.05\%
Severity	2009.2	$0.054(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.182(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.000)$	0.852	+5.54\%
Severity	2010.1	$0.056(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.174(\mathrm{Cl}=+/-0.078 ; p=0.000)$	0.857	+5.74\%
Severity	2010.2	$0.058(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.185(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.000)$	0.863	+6.02\%
Severity	2011.1	0.060 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.178 ($\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.000$)	0.865	+6.21\%
Severity	2011.2	$0.064(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.192 ($\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.000$)	0.882	+6.62\%
Severity	2012.1	$0.063(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.196 ($\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.000$)	0.874	+6.52\%
Severity	2012.2	$0.061(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.187(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.000$)	0.849	+6.26\%
Severity	2013.1	$0.065(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.171(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.000)$	0.873	+6.73\%
Severity	2013.2	$0.063(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.165 ($\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.001$)	0.843	+6.53\%
Severity	2014.1	0.070 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.143(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.001$)	0.893	+7.26\%
Severity	2014.2	0.070 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.142 (Cl $=+/-0.077 ; p=0.001$)	0.867	+7.22\%
Severity	2015.1	0.071 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	0.139 ($\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.003$)	0.858	+7.34\%
Severity	2015.2	$0.066(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	0.128 ($\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.006$)	0.820	+6.84\%
Severity	2016.1	0.063 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	$0.136(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.007$)	0.803	+6.47\%
Severity	2016.2	$0.056(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.122 ($\mathrm{Cl}=+/-0.090 ; p=0.013$)	0.739	+5.76\%
Frequency	2004.1	$-0.002(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.571$)	$-0.008(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.821)$	-0.045	-0.19\%
Frequency	2004.2	-0.001 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.725$)	$-0.004(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.910)$	-0.055	-0.13\%
Frequency	2005.1	$-0.001(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.706$)	$-0.003(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.934)$	-0.056	-0.14\%
Frequency	2005.2	$-0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.522)$	$-0.010(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.808)$	-0.047	-0.25\%
Frequency	2006.1	$-0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.437)$	$-0.005(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.894$)	-0.043	-0.32\%
Frequency	2006.2	$-0.005(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.199)$	$-0.018(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.660)$	-0.002	-0.55\%
Frequency	2007.1	$-0.006(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.152)$	$-0.012(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.767$)	0.010	-0.64\%
Frequency	2007.2	$-0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.066)$	$-0.023(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.572)$	0.062	-0.85\%
Frequency	2008.1	$-0.010(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.040)$	-0.015 ($\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.718$)	0.090	-1.01\%
Frequency	2008.2	$-0.009(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.077)$	$-0.011(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.804)$	0.050	-0.92\%
Frequency	2009.1	$-0.012(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.031)$	$0.002(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.966)$	0.107	-1.17\%
Frequency	2009.2	-0.011 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.064$)	$0.007(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.874$)	0.064	-1.06\%
Frequency	2010.1	$-0.013(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.034)$	0.017 ($\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.693$)	0.111	-1.29\%
Frequency	2010.2	$-0.017(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.005)$	$-0.001(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.988)$	0.241	-1.72\%
Frequency	2011.1	$-0.022(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.021(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.570)$	0.423	-2.22\%
Frequency	2011.2	$-0.020(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.001)$	0.030 ($\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.421$)	0.361	-1.99\%
Frequency	2012.1	$-0.020(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.003)$	$0.031(\mathrm{Cl}=+/-0.079 ; p=0.424)$	0.324	-2.02\%
Frequency	2012.2	$-0.020(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.007$)	$0.032(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.429)$	0.288	-1.99\%
Frequency	2013.1	$-0.019(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.020)$	0.027 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.527$)	0.202	-1.84\%
Frequency	2013.2	$-0.020(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.024)$	$0.023(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.604)$	0.198	-1.96\%
Frequency	2014.1	$-0.017(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.069)$	0.015 ($\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.748$)	0.098	-1.71\%
Frequency	2014.2	$-0.016(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.125)$	0.018 ($\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.713$)	0.048	-1.60\%
Frequency	2015.1	$-0.018(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.124)$	0.025 ($\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.641$)	0.050	-1.82\%
Frequency	2015.2	$-0.018(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.185)$	$0.026(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.648)$	0.014	-1.77\%
Frequency	2016.1	$-0.019(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.219)$	$0.029(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.631$)	-0.014	-1.92\%
Frequency	2016.2	$-0.012(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.469)$	0.045 ($\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.488$)	-0.083	-1.23\%

CM- All Other

Coverage $=$ CM- All Other
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality, mobility

Fit	Start Date	Time	Seasonality	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.035 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.145 ($\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.011$)	$0.003(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.344)$	0.581	+3.54\%
Loss Cost	2004.2	$0.035(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.145(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.013)$	$0.003(\mathrm{Cl}=+/-0.006 ; p=0.353)$	0.551	+3.53\%
Loss Cost	2005.1	$0.035(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.145 ($\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.016$)	$0.003(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.366)$	0.538	+3.53\%
Loss Cost	2005.2	$0.034(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.142 ($\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.021$)	$0.003(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.389)$	0.496	+3.46\%
Loss Cost	2006.1	$0.037(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.127(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.039)$	$0.003(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.304)$	0.520	+3.75\%
Loss Cost	2006.2	$0.036(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.122(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.052)$	$0.003(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.334)$	0.469	+3.63\%
Loss Cost	2007.1	$0.036(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.118 ($\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.069$)	$0.003(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.326)$	0.461	+3.71\%
Loss Cost	2007.2	$0.036(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.118 ($\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.079)$	$0.003(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.339)$	0.420	+3.69\%
Loss Cost	2008.1	0.036 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.001$)	0.119 ($\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.090$)	$0.003(\mathrm{Cl}=+/-0.007 ; ~ p=0.358)$	0.402	+3.68\%
Loss Cost	2008.2	$0.044(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.148 ($\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.018$)	$0.004(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.183)$	0.569	+4.52\%
Loss Cost	2009.1	0.045 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	0.147 ($\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.024$)	$0.004(\mathrm{Cl}=+/-0.006 ; ~ p=0.192)$	0.556	+4.55\%
Loss Cost	2009.2	$0.052(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.172(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.004)$	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.090)$	0.668	+5.32\%
Loss Cost	2010.1	$0.052(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.170(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.007)$	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.099)$	0.655	+5.36\%
Loss Cost	2010.2	$0.051(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.166(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.011$)	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.115$)	0.601	+5.20\%
Loss Cost	2011.1	$0.047(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.178(\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.009)$	$0.004(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.160)$	0.580	+4.84\%
Loss Cost	2011.2	$0.055(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.201(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.002)$	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.085$)	0.671	+5.66\%
Loss Cost	2012.1	0.055 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.202(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.003)$	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.101$)	0.658	+5.64\%
Loss Cost	2012.2	$0.053(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.001)$	$0.196(\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.006$)	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.119)$	0.595	+5.43\%
Loss Cost	2013.1	$0.063(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	$0.165(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.014)$	$0.006(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.050$)	0.669	+6.52\%
Loss Cost	2013.2	$0.060(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001$)	$0.158(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.022)$	$0.006(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.061$)	0.598	+6.21\%
Loss Cost	2014.1	$0.076(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$0.113(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.047)$	$0.007(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.008)$	0.751	+7.92\%
Loss Cost	2014.2	0.078 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000$)	$0.117(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.051$)	$0.007(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.010$)	0.717	+8.11\%
Loss Cost	2015.1	$0.080(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	$0.111(\mathrm{Cl}=+/-0.129 ; p=0.086)$	$0.007(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.013$)	0.703	+8.38\%
Loss Cost	2015.2	$0.077(\mathrm{Cl}=+/-0.037 ; p=0.001)$	$0.102(\mathrm{Cl}=+/-0.137 ; p=0.128)$	$0.007(\mathrm{Cl}=+/-0.006 ; p=0.017)$	0.631	+7.97\%
Loss Cost	2016.1	$0.075(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.004)$	$0.106(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.153)$	$0.007(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.026)$	0.601	+7.79\%
Loss Cost	2016.2	0.075 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.009$)	0.106 ($\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.188$)	$0.007(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.036)$	0.539	+7.80\%
Severity	2004.1	0.030 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.172 (Cl $=+/-0.088 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.116)$	0.711	+3.04\%
Severity	2004.2	$0.029(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.167(\mathrm{Cl}=+/-0.090 ; p=0.001)$	$-0.004(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.106)$	0.683	+2.92\%
Severity	2005.1	$0.028(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.169(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.001$)	$-0.004(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.107)$	0.674	+2.88\%
Severity	2005.2	$0.029(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.170(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.001$)	$-0.004(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.117)$	0.654	+2.91\%
Severity	2006.1	$0.032(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.154(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.002)$	$-0.003(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.168)$	0.686	+3.23\%
Severity	2006.2	$0.033(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.159(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.002)$	$-0.003(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.190)$	0.675	+3.34\%
Severity	2007.1	$0.034(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.152(\mathrm{Cl}=+/-0.100 ; \mathrm{p}=0.004)$	$-0.003(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.232)$	0.676	+3.48\%
Severity	2007.2	$0.036(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.160(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.003$)	$-0.003(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.267)$	0.677	+3.68\%
Severity	2008.1	$0.037(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.155(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.005$)	$-0.003(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.310)$	0.673	+3.79\%
Severity	2008.2	$0.044(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.179 ($\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.000$)	$-0.002(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.361)$	0.782	+4.47\%
Severity	2009.1	$0.047(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.168 ($\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.001$)	$-0.002(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.469)$	0.793	+4.76\%
Severity	2009.2	$0.052(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.187(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.568)$	0.848	+5.34\%
Severity	2010.1	$0.054(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.177(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.691)$	0.852	+5.58\%
Severity	2010.2	$0.057(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.187(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.784)$	0.857	+5.91\%
Severity	2011.1	$0.060(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.179(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.907$)	0.858	+6.16\%
Severity	2011.2	$0.064(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.192(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.959)$	0.875	+6.64\%
Severity	2012.1	$0.063(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.196(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.982)$	0.867	+6.51\%
Severity	2012.2	$0.060(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.188 ($\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.000$)	$0.000(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.908)$	0.841	+6.20\%
Severity	2013.1	$0.066(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.169(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.001$)	$0.000(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.826)$	0.865	+6.86\%
Severity	2013.2	$0.064(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.164(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.001)$	$0.000(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.873)$	0.833	+6.62\%
Severity	2014.1	$0.074(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.136(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.002)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.478)$	0.889	+7.68\%
Severity	2014.2	$0.074(\mathrm{Cl}=+/-0.020 ; p=0.000)$	0.135 ($\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.004$)	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.499)$	0.862	+7.64\%
Severity	2015.1	$0.076(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.130(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.008)$	$0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.468)$	0.853	+7.88\%
Severity	2015.2	$0.071(\mathrm{Cl}=+/-0.025 ; p=0.000)$	$0.119(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.015$)	$0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.489)$	0.812	+7.36\%
Severity	2016.1	$0.067(\mathrm{Cl}=+/-0.029 ; p=0.000)$	$0.128(\mathrm{Cl}=+/-0.100 ; p=0.017)$	$0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.585)$	0.790	+6.95\%
Severity	2016.2	$0.061(\mathrm{Cl}=+/-0.030 ; p=0.001)$	0.113 ($\mathrm{Cl}=+/-0.100 ; \mathrm{p}=0.031$)	$0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.562)$	0.722	+6.24\%
Frequency	2004.1	$0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.161)$	$-0.027(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.399)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001)$	0.247	+0.49\%
Frequency	2004.2	$0.006(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.100)$	$-0.022(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.498)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.257	+0.59\%
Frequency	2005.1	$0.006(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.102)$	$-0.024(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.476)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001)$	0.257	+0.63\%
Frequency	2005.2	$0.005(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.182)$	$-0.028(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.406)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001$)	0.259	+0.53\%
Frequency	2006.1	$0.005(\mathrm{Cl}=+/-0.009 ; p=0.236)$	$-0.027(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.445)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001)$	0.253	+0.51\%
Frequency	2006.2	$0.003(\mathrm{Cl}=+/-0.009 ; p=0.508)$	$-0.037(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.289)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001$)	0.287	+0.28\%
Frequency	2007.1	$0.002(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.623)$	$-0.034(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.342)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.002)$	0.285	+0.22\%
Frequency	2007.2	$0.000(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.976$)	$-0.042(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.233)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.002)$	0.322	+0.01\%
Frequency	2008.1	$-0.001(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.825$)	$-0.037(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.314)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.003)$	0.328	-0.11\%
Frequency	2008.2	$0.000(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.936)$	$-0.031(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.398)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.003)$	0.314	+0.04\%
Frequency	2009.1	$-0.002(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.714)$	$-0.021(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.573)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.005)$	0.338	-0.20\%
Frequency	2009.2	$0.000(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.976)$	$-0.015(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.696)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.004)$	0.325	-0.02\%
Frequency	2010.1	$-0.002(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.730)$	$-0.007(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.858)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.007)$	0.340	-0.22\%
Frequency	2010.2	$-0.007(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.259)$	$-0.021(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.544)$	$0.005(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.006$)	0.454	-0.68\%
Frequency	2011.1	$-0.013(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.033)$	$-0.001(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.983)$	$0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.007)$	0.583	-1.25\%
Frequency	2011.2	$-0.009(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.108)$	$0.009(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.771$)	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.003$)	0.576	-0.92\%
Frequency	2012.1	$-0.008(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.193)$	$0.006(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.863)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.004)$	0.554	-0.82\%
Frequency	2012.2	$-0.007(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.290)$	$0.008(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.804$)	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.005$)	0.534	-0.72\%
Frequency	2013.1	$-0.003(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.658)$	$-0.004(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.904$)	$0.005(\mathrm{Cl}=+/-0.003 ; p=0.003)$	0.524	-0.32\%
Frequency	2013.2	$-0.004(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.626)$	$-0.006(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.872)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.004$)	0.517	-0.38\%
Frequency	2014.1	$0.002(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.780)$	$-0.023(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.510)$	$0.006(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.002)$	0.539	+0.23\%
Frequency	2014.2	$0.004(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.629)$	$-0.018(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.614)$	$0.006(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.002)$	0.524	+0.43\%
Frequency	2015.1	$0.005(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.656)$	$-0.019(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.630)$	$0.006(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.003)$	0.514	+0.46\%
Frequency	2015.2	$0.006(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.624)$	$-0.017(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.692)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.005$)	0.495	+0.57\%
Frequency	2016.1	$0.008(\mathrm{Cl}=+/-0.030 ; p=0.569)$	$-0.022(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.642)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.007$)	0.480	+0.79\%
Frequency	2016.2	0.015 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.314)$	$-0.007(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.881)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.006)$	0.495	+1.46\%

CM- All Other

Coverage $=$ CM - All Other
End Trend Period $=2022.2$
Excluded Points $=2020.1,2020.2,2021.1$
Parameters Included: time

Fit	Start Date	Time	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.037(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.562	+3.76\%
Loss Cost	2004.2	$0.036(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.534	+3.69\%
Loss Cost	2005.1	$0.037(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.524	+3.77\%
Loss Cost	2005.2	$0.036(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.487	+3.64\%
Loss Cost	2006.1	$0.039(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.532	+3.97\%
Loss Cost	2006.2	0.037 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	0.491	+3.79\%
Loss Cost	2007.1	0.039 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.491	+3.94\%
Loss Cost	2007.2	$0.038(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.455	+3.86\%
Loss Cost	2008.1	$0.039(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.440	+3.94\%
Loss Cost	2008.2	0.045 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.565	+4.64\%
Loss Cost	2009.1	$0.047(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.558	+4.81\%
Loss Cost	2009.2	$0.053(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.629	+5.39\%
Loss Cost	2010.1	$0.054(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.624	+5.60\%
Loss Cost	2010.2	$0.051(\mathrm{Cl}=+/-0.020 ; p=0.000)$	0.577	+5.28\%
Loss Cost	2011.1	$0.051(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.538	+5.20\%
Loss Cost	2011.2	$0.056(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.581	+5.75\%
Loss Cost	2012.1	$0.059(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	0.575	+6.03\%
Loss Cost	2012.2	$0.054(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.001$)	0.512	+5.55\%
Loss Cost	2013.1	$0.065(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	0.653	+6.68\%
Loss Cost	2013.2	$0.059(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.596	+6.08\%
Loss Cost	2014.1	$0.073(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.823	+7.61\%
Loss Cost	2014.2	$0.072(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.792	+7.48\%
Loss Cost	2015.1	$0.076(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	0.791	+7.89\%
Loss Cost	2015.2	$0.069(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.759	+7.11\%
Loss Cost	2016.1	0.070 ($\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.001$)	0.724	+7.20\%
Loss Cost	2016.2	$0.065(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.003)$	0.658	+6.70\%
Severity	2004.1	$0.034(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.551	+3.47\%
Severity	2004.2	$0.032(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.514	+3.30\%
Severity	2005.1	$0.033(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.504	+3.38\%
Severity	2005.2	0.033 (Cl = +/-0.012; $\mathrm{p}=0.000$)	0.476	+3.34\%
Severity	2006.1	$0.037(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.547	+3.73\%
Severity	2006.2	$0.037(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.527	+3.76\%
Severity	2007.1	$0.039(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.547	+4.01\%
Severity	2007.2	0.040 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.538	+4.12\%
Severity	2008.1	$0.043(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.550	+4.36\%
Severity	2008.2	$0.048(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.631	+4.91\%
Severity	2009.1	$0.052(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.670	+5.33\%
Severity	2009.2	$0.056(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.701	+5.74\%
Severity	2010.1	0.060 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.727	+6.15\%
Severity	2010.2	$0.061(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.714	+6.30\%
Severity	2011.1	$0.065(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.736	+6.74\%
Severity	2011.2	$0.068(\mathrm{Cl}=+/-0.020 ; p=0.000)$	0.730	+7.00\%
Severity	2012.1	$0.070(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.717	+7.21\%
Severity	2012.2	$0.065(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.676	+6.66\%
Severity	2013.1	$0.072(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.746	+7.51\%
Severity	2013.2	$0.068(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.705	+7.03\%
Severity	2014.1	$0.079(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.815	+8.17\%
Severity	2014.2	$0.076(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.781	+7.86\%
Severity	2015.1	$0.081(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.789	+8.40\%
Severity	2015.2	$0.073(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	0.757	+7.57\%
Severity	2016.1	$0.074(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.001)$	0.723	+7.68\%
Severity	2016.2	$0.063(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.002)$	0.677	+6.54\%
Frequency	2004.1	$0.003(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.373)$	-0.005	+0.27\%
Frequency	2004.2	$0.004(\mathrm{Cl}=+/-0.006 ; p=0.239)$	0.013	+0.38\%
Frequency	2005.1	$0.004(\mathrm{Cl}=+/-0.007 ; ~ p=0.260)$	0.010	+0.38\%
Frequency	2005.2	$0.003(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.412)$	-0.010	+0.29\%
Frequency	2006.1	$0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.526)$	-0.020	+0.24\%
Frequency	2006.2	$0.000(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.944)$	-0.036	+0.03\%
Frequency	2007.1	$-0.001(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.878)$	-0.036	-0.06\%
Frequency	2007.2	$-0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.535)$	-0.023	-0.25\%
Frequency	2008.1	$-0.004(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.347)$	-0.003	-0.40\%
Frequency	2008.2	$-0.003(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.570)$	-0.027	-0.25\%
Frequency	2009.1	$-0.005(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.280)$	0.009	-0.49\%
Frequency	2009.2	$-0.003(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.493)$	-0.023	-0.33\%
Frequency	2010.1	$-0.005(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.302)$	0.005	-0.52\%
Frequency	2010.2	$-0.010(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.042)$	0.151	-0.96\%
Frequency	2011.1	-0.015 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.001$)	0.443	-1.44\%
Frequency	2011.2	$-0.012(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.003)$	0.370	-1.16\%
Frequency	2012.1	$-0.011(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.008)$	0.312	-1.10\%
Frequency	2012.2	$-0.011(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.019)$	0.256	-1.05\%
Frequency	2013.1	$-0.008(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.072)$	0.147	-0.78\%
Frequency	2013.2	$-0.009(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.066)$	0.166	-0.88\%
Frequency	2014.1	$-0.005(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.240)$	0.036	-0.51\%
Frequency	2014.2	$-0.004(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.450)$	-0.031	-0.36\%
Frequency	2015.1	$-0.005(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.378)$	-0.013	-0.47\%
Frequency	2015.2	$-0.004(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.484)$	-0.045	-0.43\%
Frequency	2016.1	$-0.005(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.523)$	-0.059	-0.45\%
Frequency	2016.2	$0.002(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.815)$	-0.117	+0.15\%

CM- All Other

Coverage $=C M$ - All Other
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.030 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.145 ($\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.015$)	0.501	+3.07\%
Loss Cost	2004.2	0.030 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	$0.143(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.020)$	0.461	+3.04\%
Loss Cost	2005.1	0.029 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	0.145 ($\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.022$)	0.446	+2.99\%
Loss Cost	2005.2	$0.028(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001$)	0.139 ($\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.033$)	0.389	+2.86\%
Loss Cost	2006.1	$0.031(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.125 ($\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.055$)	0.416	+3.15\%
Loss Cost	2006.2	0.029 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.002$)	0.116 ($\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.082$)	0.345	+2.93\%
Loss Cost	2007.1	$0.029(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.003)$	0.115 ($\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.099$)	0.335	+2.96\%
Loss Cost	2007.2	$0.028(\mathrm{Cl}=+/-0.020 ; p=0.007)$	$0.111(\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.124)$	0.278	+2.87\%
Loss Cost	2008.1	$0.027(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.016$)	$0.115(\mathrm{Cl}=+/-0.150 ; \mathrm{p}=0.128)$	0.258	+2.77\%
Loss Cost	2008.2	0.037 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.001$)	$0.152(\mathrm{Cl}=+/-0.129 ; p=0.023)$	0.476	+3.79\%
Loss Cost	2009.1	0.037 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.002$)	$0.154(\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.029$)	0.460	+3.74\%
Loss Cost	2009.2	$0.046(\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.187(\mathrm{Cl}=+/-0.120 ; p=0.004)$	0.622	+4.72\%
Loss Cost	2010.1	0.046 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	$0.189(\mathrm{Cl}=+/-0.127 ; p=0.006)$	0.609	+4.66\%
Loss Cost	2010.2	$0.043(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.002)$	0.180 ($\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.011$)	0.530	+4.37\%
Loss Cost	2011.1	0.037 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.009$)	$0.199(\mathrm{Cl}=+/-0.135 ; p=0.007)$	0.526	+3.74\%
Loss Cost	2011.2	$0.048(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.001)$	$0.230(\mathrm{Cl}=+/-0.120 ; p=0.001)$	0.670	+4.90\%
Loss Cost	2012.1	0.046 ($\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.004$)	0.237 ($\mathrm{Cl}=+/-0.129 ; p=0.002$)	0.662	+4.66\%
Loss Cost	2012.2	$0.042(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.014)$	$0.227(\mathrm{Cl}=+/-0.137 ; \mathrm{p}=0.004)$	0.579	+4.24\%
Loss Cost	2013.1	$0.054(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.004)$	$0.197(\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.007$)	0.661	+5.52\%
Loss Cost	2013.2	$0.048(\mathrm{Cl}=+/-0.037 ; p=0.017)$	$0.183(\mathrm{Cl}=+/-0.139 ; p=0.015)$	0.552	+4.87\%
Loss Cost	2014.1	0.070 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000$)	$0.134(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.011$)	0.814	+7.30\%
Loss Cost	2014.2	$0.074(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.001$)	0.140 ($\mathrm{Cl}=+/-0.105 ; p=0.015$)	0.773	+7.66\%
Loss Cost	2015.1	0.076 ($\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.004$)	$0.136(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.033$)	0.756	+7.87\%
Loss Cost	2015.2	$0.066(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.019$)	$0.121(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.066)$	0.621	+6.82\%
Loss Cost	2016.1	0.055 ($\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.094$)	$0.138(\mathrm{Cl}=+/-0.156 ; p=0.071)$	0.591	+5.61\%
Loss Cost	2016.2	$0.050(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.227$)	$0.133(\mathrm{Cl}=+/-0.197 ; ~ p=0.134)$	0.372	+5.13\%
Severity	2004.1	$0.026(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.180(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.001)$	0.576	+2.62\%
Severity	2004.2	$0.024(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.172 ($\mathrm{Cl}=+/-0.096 ; p=0.001$)	0.523	+2.45\%
Severity	2005.1	0.023 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.176 ($\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.001$)	0.514	+2.37\%
Severity	2005.2	$0.023(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.001$)	0.176 ($\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.002$)	0.479	+2.37\%
Severity	2006.1	$0.026(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.161(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.003$)	0.517	+2.68\%
Severity	2006.2	$0.027(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.165 ($\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.004$)	0.496	+2.77\%
Severity	2007.1	$0.028(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001$)	$0.161(\mathrm{Cl}=+/-0.110 ; p=0.006)$	0.497	+2.87\%
Severity	2007.2	0.030 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.001$)	$0.169(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.005$)	0.496	+3.09\%
Severity	2008.1	$0.031(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001$)	$0.167(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.008)$	0.492	+3.15\%
Severity	2008.2	$0.039(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.199(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.000)$	0.675	+4.01\%
Severity	2009.1	0.042 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.189 ($\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.001$)	0.688	+4.28\%
Severity	2009.2	0.049 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.214(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.000$)	0.791	+5.05\%
Severity	2010.1	$0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.207 ($\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.000$)	0.795	+5.28\%
Severity	2010.2	$0.056(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.222(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.000)$	0.813	+5.77\%
Severity	2011.1	$0.058(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	0.215 ($\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.000$)	0.814	+6.00\%
Severity	2011.2	$0.066(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	0.236 ($\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.000$)	0.863	+6.81\%
Severity	2012.1	$0.063(\mathrm{Cl}=+/-0.020 ; p=0.000)$	0.244 ($\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.000$)	0.858	+6.54\%
Severity	2012.2	0.060 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	$0.234(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.000$)	0.818	+6.15\%
Severity	2013.1	$0.067(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.215 ($\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.000$)	0.853	+6.98\%
Severity	2013.2	$0.065(\mathrm{Cl}=+/-0.027 ; p=0.000)$	0.210 ($\mathrm{Cl}=+/-0.100 ; p=0.001$)	0.804	+6.74\%
Severity	2014.1	0.080 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000$)	0.178 ($\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.001$)	0.902	+8.34\%
Severity	2014.2	$0.083(\mathrm{Cl}=+/-0.027 ; p=0.000)$	$0.183(\mathrm{Cl}=+/-0.087 ; ~ p=0.001)$	0.876	+8.66\%
Severity	2015.1	$0.087(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.001$)	0.176 ($\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.004$)	0.873	+9.10\%
Severity	2015.2	$0.081(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.004)$	0.167 ($\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.010$)	0.805	+8.46\%
Severity	2016.1	0.070 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.024$)	$0.184(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.015$)	0.801	+7.27\%
Severity	2016.2	$0.054(\mathrm{Cl}=+/-0.070 ; p=0.099)$	0.165 ($\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.032$)	0.683	+5.56\%
Frequency	2004.1	$0.004(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.247)$	$-0.035(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.313)$	0.010	+0.44\%
Frequency	2004.2	$0.006(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.159)$	$-0.029(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.413)$	0.025	+0.57\%
Frequency	2005.1	$0.006(\mathrm{Cl}=+/-0.009 ; p=0.157)$	$-0.031(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.396)$	0.024	+0.61\%
Frequency	2005.2	$0.005(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.284)$	$-0.037(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.319)$	0.008	+0.48\%
Frequency	2006.1	$0.005(\mathrm{Cl}=+/-0.010 ; p=0.349)$	$-0.036(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.356)$	-0.011	+0.45\%
Frequency	2006.2	$0.002(\mathrm{Cl}=+/-0.010 ; p=0.747)$	$-0.049(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.191)$	-0.003	+0.15\%
Frequency	2007.1	$0.001(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.866$)	$-0.046(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.237)$	-0.021	+0.09\%
Frequency	2007.2	$-0.002(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.685)$	$-0.059(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.128)$	0.027	-0.21\%
Frequency	2008.1	$-0.004(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.517)$	$-0.052(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.186)$	0.019	-0.36\%
Frequency	2008.2	$-0.002(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.731)$	$-0.046(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.254)$	-0.023	-0.21\%
Frequency	2009.1	$-0.005(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.420)$	$-0.035(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.393)$	-0.021	-0.51\%
Frequency	2009.2	$-0.003(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.646)$	$-0.028(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.507$)	-0.071	-0.31\%
Frequency	2010.1	$-0.006(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.432)$	$-0.018(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.671$)	-0.061	-0.58\%
Frequency	2010.2	$-0.013(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.050)$	$-0.042(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.244)$	0.180	-1.32\%
Frequency	2011.1	$-0.022(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$-0.016(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.525)$	0.550	-2.13\%
Frequency	2011.2	$-0.018(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.002)$	$-0.006(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.800)$	0.454	-1.79\%
Frequency	2012.1	$-0.018(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.005)$	$-0.007(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.793$)	0.394	-1.77\%
Frequency	2012.2	$-0.018(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.011$)	$-0.007(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.787)$	0.336	-1.79\%
Frequency	2013.1	$-0.014(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.055)$	$-0.018(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.492)$	0.216	-1.36\%
Frequency	2013.2	$-0.018(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.027)$	$-0.027(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.320)$	0.324	-1.75\%
Frequency	2014.1	$-0.010(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.146)$	$-0.044(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.064)$	0.359	-0.96\%
Frequency	2014.2	$-0.009(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.234)$	$-0.044(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.094)$	0.246	-0.93\%
Frequency	2015.1	$-0.011(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.245)$	$-0.040(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.165)$	0.240	-1.13\%
Frequency	2015.2	$-0.015(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.202)$	$-0.046(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.150)$	0.257	-1.52\%
Frequency	2016.1	$-0.016(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.325)$	$-0.045(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.227)$	0.217	-1.55\%
Frequency	2016.2	$-0.004(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.809)$	$-0.032(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.381)$	-0.192	-0.41\%

CM- All Other

Coverage $=C M-$ All Other
End Trend Period $=2022.2$
Excluded Points $=2020.1,2020.2,2021.1$
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.036(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.129 ($\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.025$)	0.615	+3.64\%
Loss Cost	2004.2	$0.036(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.129(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.029$)	0.588	+3.63\%
Loss Cost	2005.1	$0.036(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.128 ($\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.036$)	0.577	+3.64\%
Loss Cost	2005.2	0.035 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	$0.124(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.047$)	0.538	+3.57\%
Loss Cost	2006.1	$0.038(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.109(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.082)$	0.566	+3.85\%
Loss Cost	2006.2	0.037 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	0.102 ($\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.109$)	0.521	+3.73\%
Loss Cost	2007.1	0.037 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.097 ($\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.140$)	0.514	+3.82\%
Loss Cost	2007.2	0.037 ($\mathrm{Cl}=+/-0.016 ; p=0.000)$	$0.096(\mathrm{Cl}=+/-0.136 ; p=0.158)$	0.477	+3.79\%
Loss Cost	2008.1	0.037 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.096(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.178)$	0.460	+3.80\%
Loss Cost	2008.2	$0.044(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.130(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.038)$	0.625	+4.54\%
Loss Cost	2009.1	0.045 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.127(\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.051$)	0.613	+4.59\%
Loss Cost	2009.2	$0.051(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.156 ($\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.009$)	0.721	+5.26\%
Loss Cost	2010.1	$0.052(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.154(\mathrm{Cl}=+/-0.120 ; p=0.014)$	0.710	+5.30\%
Loss Cost	2010.2	$0.050(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.147 ($\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.023$)	0.664	+5.13\%
Loss Cost	2011.1	0.047 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$0.160(\mathrm{Cl}=+/-0.129 ; p=0.019)$	0.645	+4.84\%
Loss Cost	2011.2	$0.054(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.186(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.004)$	0.731	+5.54\%
Loss Cost	2012.1	$0.054(\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.187(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.006$)	0.720	+5.53\%
Loss Cost	2012.2	$0.052(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.179(\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.012)$	0.664	+5.31\%
Loss Cost	2013.1	0.060 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	0.146 ($\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.024$)	0.745	+6.22\%
Loss Cost	2013.2	$0.057(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.135(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.042)$	0.687	+5.88\%
Loss Cost	2014.1	0.070 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.088(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.064)$	0.858	+7.28\%
Loss Cost	2014.2	$0.071(\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.089(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.081$)	0.830	+7.32\%
Loss Cost	2015.1	$0.072(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.083(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.131$)	0.819	+7.52\%
Loss Cost	2015.2	$0.067(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$0.067(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.222)$	0.776	+6.97\%
Loss Cost	2016.1	$0.066(\mathrm{Cl}=+/-0.030 ; p=0.001)$	$0.071(\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.244)$	0.741	+6.81\%
Loss Cost	2016.2	$0.064(\mathrm{Cl}=+/-0.036 ; p=0.004)$	$0.064(\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.338)$	0.660	+6.57\%
Severity	2004.1	$0.033(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.168(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.001)$	0.668	+3.32\%
Severity	2004.2	0.032 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.163 ($\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.002$)	0.632	+3.22\%
Severity	2005.1	0.032 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.164(\mathrm{Cl}=+/-0.103 ; p=0.003)$	0.623	+3.21\%
Severity	2005.2	0.032 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.167(\mathrm{Cl}=+/-0.106 ; p=0.003)$	0.601	+3.25\%
Severity	2006.1	0.035 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.149 ($\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.007$)	0.641	+3.56\%
Severity	2006.2	$0.036(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.155(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.006$)	0.631	+3.67\%
Severity	2007.1	0.037 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.147 ($\mathrm{Cl}=+/-0.110 ; p=0.011$)	0.636	+3.82\%
Severity	2007.2	$0.039(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.156 ($\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.008$)	0.640	+4.01\%
Severity	2008.1	$0.041(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.150(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.013$)	0.639	+4.14\%
Severity	2008.2	$0.047(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.179(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.001$)	0.764	+4.77\%
Severity	2009.1	0.049 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	0.166 ($\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.002$)	0.778	+5.04\%
Severity	2009.2	$0.054(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.189(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.000)$	0.843	+5.57\%
Severity	2010.1	$0.056(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.179 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.000$)	0.848	+5.80\%
Severity	2010.2	$0.059(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.191(\mathrm{Cl}=+/-0.087 ; p=0.000)$	0.857	+6.11\%
Severity	2011.1	$0.061(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	0.182 ($\mathrm{Cl}=+/-0.091 ; p=0.001$)	0.860	+6.32\%
Severity	2011.2	0.065 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	0.199 ($\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.000$)	0.882	+6.77\%
Severity	2012.1	$0.064(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.203(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.000$)	0.875	+6.66\%
Severity	2012.2	$0.062(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.194(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.000$)	0.850	+6.41\%
Severity	2013.1	$0.067(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.174 ($\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.001$)	0.876	+6.96\%
Severity	2013.2	$0.066(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.167(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.002$)	0.848	+6.77\%
Severity	2014.1	$0.074(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.138(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.003$)	0.906	+7.64\%
Severity	2014.2	0.073 (Cl $=+/-0.018 ; \mathrm{p}=0.000)$	$0.138(\mathrm{Cl}=+/-0.089 ; p=0.006)$	0.884	+7.62\%
Severity	2015.1	0.075 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000$)	0.132 (CI = +/-0.098; p = 0.014)	0.877	+7.80\%
Severity	2015.2	$0.071(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.118 ($\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.027$)	0.848	+7.33\%
Severity	2016.1	0.068 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000$)	0.128 ($\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.031$)	0.832	+6.99\%
Severity	2016.2	$0.061(\mathrm{Cl}=+/-0.027 ; p=0.001)$	$0.108(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.059$)	0.786	+6.32\%
Frequency	2004.1	$0.003(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.313)$	$-0.040(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.222)$	0.011	+0.31\%
Frequency	2004.2	$0.004(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.220)$	$-0.035(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.291)$	0.018	+0.39\%
Frequency	2005.1	$0.004(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.219)$	$-0.036(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.286)$	0.016	+0.42\%
Frequency	2005.2	$0.003(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.375)$	-0.042 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.219)$	0.009	+0.31\%
Frequency	2006.1	$0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.451$)	-0.040 ($\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.255$)	-0.008	+0.28\%
Frequency	2006.2	$0.001(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.877)$	$-0.053(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.123)$	0.018	+0.06\%
Frequency	2007.1	$0.000(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.997$)	$-0.049(\mathrm{Cl}=+/-0.070 ; p=0.160)$	0.004	+0.00\%
Frequency	2007.2	$-0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.584)$	$-0.060(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.080)$	0.061	-0.21\%
Frequency	2008.1	$-0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.436)$	$-0.055(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.122)$	0.056	-0.32\%
Frequency	2008.2	$-0.002(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.620)$	-0.049 ($\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.169$)	0.014	-0.22\%
Frequency	2009.1	-0.004 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.346$)	$-0.039(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.278)$	0.019	-0.43\%
Frequency	2009.2	$-0.003(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.532)$	$-0.033(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.366)$	-0.030	-0.30\%
Frequency	2010.1	$-0.005(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.357)$	$-0.025(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.508)$	-0.021	-0.47\%
Frequency	2010.2	$-0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.046)$	$-0.044(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.168)$	0.193	-0.92\%
Frequency	2011.1	$-0.014(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.001$)	$-0.022(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.367)$	0.439	-1.39\%
Frequency	2011.2	$-0.012(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.004)$	$-0.012(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.584)$	0.345	-1.15\%
Frequency	2012.1	$-0.011(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.012)$	$-0.016(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.503)$	0.290	-1.06\%
Frequency	2012.2	$-0.010(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.024$)	-0.015 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.559)$	0.225	-1.03\%
Frequency	2013.1	$-0.007(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.105)$	$-0.028(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.251)$	0.171	-0.70\%
Frequency	2013.2	$-0.008(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.074$)	$-0.033(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.194)$	0.215	-0.84\%
Frequency	2014.1	$-0.003(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.346)$	$-0.051(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.016)$	0.370	-0.34\%
Frequency	2014.2	$-0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.482)$	$-0.049(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.028)$	0.289	-0.28\%
Frequency	2015.1	$-0.003(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.562)$	-0.049 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.043$)	0.276	-0.27\%
Frequency	2015.2	$-0.003(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.520)$	$-0.051(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.052)$	0.254	-0.33\%
Frequency	2016.1	$-0.002(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.777)$	$-0.056(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.055)$	0.269	-0.17\%
Frequency	2016.2	$0.002(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.676)$	$-0.044(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.094)$	0.168	+0.24\%

Coverage $=C M$
End Trend Period $=2022.2$
Excluded Points $=$ NA
Parameters Included: time

Fit	Start Date	Time	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.034(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.353	+3.42\%
Loss Cost	2004.2	$0.036(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.365	+3.62\%
Loss Cost	2005.1	$0.038(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.385	+3.87\%
Loss Cost	2005.2	$0.039(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.380	+3.99\%
Loss Cost	2006.1	$0.043(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.423	+4.39\%
Loss Cost	2006.2	0.044 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	0.417	+4.53\%
Loss Cost	2007.1	0.048 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	0.452	+4.94\%
Loss Cost	2007.2	$0.051(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.461	+5.21\%
Loss Cost	2008.1	$0.055(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.489	+5.63\%
Loss Cost	2008.2	$0.062(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.572	+6.40\%
Loss Cost	2009.1	$0.066(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.595	+6.86\%
Loss Cost	2009.2	0.073 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.651	+7.58\%
Loss Cost	2010.1	$0.079(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.680	+8.17\%
Loss Cost	2010.2	$0.079(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.657	+8.26\%
Loss Cost	2011.1	$0.082(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.650	+8.58\%
Loss Cost	2011.2	$0.089(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	0.683	+9.34\%
Loss Cost	2012.1	$0.095(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.699	+10.01\%
Loss Cost	2012.2	$0.096(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	0.669	+10.05\%
Loss Cost	2013.1	$0.108(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	0.736	+11.35\%
Loss Cost	2013.2	$0.107(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	0.702	+11.32\%
Loss Cost	2014.1	$0.123(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	0.790	+13.05\%
Loss Cost	2014.2	$0.127(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	0.774	+13.50\%
Loss Cost	2015.1	0.135 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000$)	0.777	+14.43\%
Loss Cost	2015.2	$0.135(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000)$	0.740	+14.45\%
Loss Cost	2016.1	$0.144(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.000)$	0.737	+15.52\%
Loss Cost	2016.2	$0.146(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.000)$	0.694	+15.74\%
Severity	2004.1	$0.040(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.458	+4.05\%
Severity	2004.2	0.040 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.448	+4.13\%
Severity	2005.1	$0.043(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.459	+4.35\%
Severity	2005.2	$0.044(\mathrm{Cl}=+/-0.016 ; p=0.000)$	0.463	+4.53\%
Severity	2006.1	$0.048(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.509	+4.96\%
Severity	2006.2	$0.051(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.525	+5.26\%
Severity	2007.1	$0.056(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.564	+5.71\%
Severity	2007.2	$0.059(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.590	+6.12\%
Severity	2008.1	$0.064(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.632	+6.65\%
Severity	2008.2	$0.070(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.681	+7.26\%
Severity	2009.1	$0.076(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.728	+7.91\%
Severity	2009.2	$0.081(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.753	+8.46\%
Severity	2010.1	$0.088(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.796	+9.19\%
Severity	2010.2	$0.092(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.807	+9.68\%
Severity	2011.1	$0.099(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.842	+10.45\%
Severity	2011.2	$0.104(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.848	+10.95\%
Severity	2012.1	$0.109(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.858	+11.55\%
Severity	2012.2	$0.109(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.840	+11.53\%
Severity	2013.1	0.118 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.877	+12.57\%
Severity	2013.2	$0.119(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.861	+12.66\%
Severity	2014.1	$0.131(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.911	+14.02\%
Severity	2014.2	$0.134(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.902	+14.31\%
Severity	2015.1	0.143 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000$)	0.919	+15.36\%
Severity	2015.2	$0.143(\mathrm{Cl}=+/-0.027 ; p=0.000)$	0.902	+15.33\%
Severity	2016.1	$0.151(\mathrm{Cl}=+/-0.029 ; p=0.000)$	0.910	+16.35\%
Severity	2016.2	$0.147(\mathrm{Cl}=+/-0.033 ; p=0.000)$	0.886	+15.85\%
Frequency	2004.1	$-0.006(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.050$)	0.078	-0.60\%
Frequency	2004.2	$-0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.117)$	0.042	-0.49\%
Frequency	2005.1	$-0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.167)$	0.028	-0.45\%
Frequency	2005.2	$-0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.134)$	0.038	-0.52\%
Frequency	2006.1	$-0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.138)$	0.038	-0.54\%
Frequency	2006.2	$-0.007(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.070)$	0.073	-0.69\%
Frequency	2007.1	$-0.007(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.071$)	0.074	-0.73\%
Frequency	2007.2	$-0.009(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.046)$	0.101	-0.86\%
Frequency	2008.1	$-0.010(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.037)$	0.115	-0.95\%
Frequency	2008.2	$-0.008(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.088)$	0.071	-0.81\%
Frequency	2009.1	-0.010 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.052$)	0.104	-0.98\%
Frequency	2009.2	$-0.008(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.122)$	0.057	-0.81\%
Frequency	2010.1	$-0.009(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.100)$	0.072	-0.93\%
Frequency	2010.2	$-0.013(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.025)$	0.165	-1.29\%
Frequency	2011.1	$-0.017(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.004)$	0.289	-1.70\%
Frequency	2011.2	$-0.015(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.016)$	0.210	-1.45\%
Frequency	2012.1	$-0.014(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.033)$	0.167	-1.38\%
Frequency	2012.2	$-0.013(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.061)$	0.130	-1.33\%
Frequency	2013.1	$-0.011(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.148)$	0.063	-1.09\%
Frequency	2013.2	$-0.012(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.155)$	0.063	-1.19\%
Frequency	2014.1	$-0.009(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.341)$	-0.002	-0.85\%
Frequency	2014.2	$-0.007(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.472)$	-0.029	-0.72\%
Frequency	2015.1	$-0.008(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.475)$	-0.032	-0.81\%
Frequency	2015.2	$-0.008(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.558)$	-0.048	-0.76\%
Frequency	2016.1	$-0.007(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.630)$	-0.062	-0.72\%
Frequency	2016.2	$-0.001(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.956)$	-0.091	-0.09\%

Coverage $=C M$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.033(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.148 ($\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.064$)	0.398	+3.36\%
Loss Cost	2004.2	$0.036(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.164(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.043)$	0.422	+3.62\%
Loss Cost	2005.1	0.037 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.153(\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.062)$	0.431	+3.80\%
Loss Cost	2005.2	$0.039(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.164(\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.051)$	0.433	+3.99\%
Loss Cost	2006.1	0.042 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	0.146 ($\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.083$)	0.461	+4.31\%
Loss Cost	2006.2	$0.044(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.157(\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.068)$	0.462	+4.53\%
Loss Cost	2007.1	0.047 ($\mathrm{Cl}=+/-0.019 ; p=0.000)$	$0.140(\mathrm{Cl}=+/-0.172 ; \mathrm{p}=0.105)$	0.483	+4.85\%
Loss Cost	2007.2	$0.051(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.158(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.072)$	0.503	+5.21\%
Loss Cost	2008.1	$0.054(\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.142(\mathrm{Cl}=+/-0.176 ; \mathrm{p}=0.111)$	0.519	+5.53\%
Loss Cost	2008.2	$0.062(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.181(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.028)$	0.632	+6.40\%
Loss Cost	2009.1	$0.065(\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.166(\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.046)$	0.642	+6.72\%
Loss Cost	2009.2	0.073 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$0.202(\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.009)$	0.727	+7.58\%
Loss Cost	2010.1	$0.077(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.185 ($\mathrm{Cl}=+/-0.150 ; \mathrm{p}=0.018$)	0.739	+8.00\%
Loss Cost	2010.2	$0.079(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.195(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.016$)	0.727	+8.26\%
Loss Cost	2011.1	$0.080(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.191(\mathrm{Cl}=+/-0.162 ; \mathrm{p}=0.023)$	0.715	+8.36\%
Loss Cost	2011.2	$0.089(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.226(\mathrm{Cl}=+/-0.149 ; \mathrm{p}=0.005)$	0.778	+9.34\%
Loss Cost	2012.1	$0.093(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.212(\mathrm{Cl}=+/-0.154 ; \mathrm{p}=0.010)$	0.779	+9.72\%
Loss Cost	2012.2	0.096 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000$)	$0.223(\mathrm{Cl}=+/-0.160 ; \mathrm{p}=0.009)$	0.763	+10.05\%
Loss Cost	2013.1	$0.105(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	$0.192(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.019)$	0.800	+11.03\%
Loss Cost	2013.2	$0.107(\mathrm{Cl}=+/-0.030 ; p=0.000)$	$0.200(\mathrm{Cl}=+/-0.164 ; \mathrm{p}=0.020)$	0.777	+11.32\%
Loss Cost	2014.1	0.120 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000$)	$0.161(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.038)$	0.833	+12.71\%
Loss Cost	2014.2	$0.127(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	$0.180(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.024$)	0.834	+13.50\%
Loss Cost	2015.1	$0.131(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	0.168 ($\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.044$)	0.827	+13.98\%
Loss Cost	2015.2	0.135 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000$)	$0.179(\mathrm{Cl}=+/-0.174 ; \mathrm{p}=0.045)$	0.802	+14.45\%
Loss Cost	2016.1	0.139 ($\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000$)	$0.169(\mathrm{Cl}=+/-0.190 ; \mathrm{p}=0.076)$	0.787	+14.92\%
Loss Cost	2016.2	0.146 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.000$)	$0.184(\mathrm{Cl}=+/-0.203 ; \mathrm{p}=0.071$)	0.761	+15.74\%
Severity	2004.1	$0.039(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.149(\mathrm{Cl}=+/-0.149 ; \mathrm{p}=0.050)$	0.501	+3.98\%
Severity	2004.2	0.040 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.158(\mathrm{Cl}=+/-0.152 ; \mathrm{p}=0.042)$	0.498	+4.13\%
Severity	2005.1	$0.042(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.150(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.060)$	0.500	+4.27\%
Severity	2005.2	$0.044(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.164(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.042)$	0.514	+4.53\%
Severity	2006.1	0.048 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.144(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.071)$	0.545	+4.88\%
Severity	2006.2	$0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.164(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.041)$	0.574	+5.26\%
Severity	2007.1	0.055 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.145(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.069)$	0.599	+5.62\%
Severity	2007.2	$0.059(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.169(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.031)$	0.641	+6.12\%
Severity	2008.1	$0.063(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.149 ($\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.056$)	0.667	+6.54\%
Severity	2008.2	0.070 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.181(\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.013)$	0.740	+7.26\%
Severity	2009.1	0.075 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.158(\mathrm{Cl}=+/-0.137 ; \mathrm{p}=0.025)$	0.769	+7.78\%
Severity	2009.2	$0.081(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.186(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.006)$	0.814	+8.46\%
Severity	2010.1	$0.086(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.163(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.011)$	0.840	+9.03\%
Severity	2010.2	$0.092(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.187(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.002)$	0.868	+9.68\%
Severity	2011.1	0.098 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.165 ($\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.005$)	0.888	+10.26\%
Severity	2011.2	$0.104(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.189(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.001)$	0.911	+10.95\%
Severity	2012.1	$0.107(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.177(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.002)$	0.913	+11.30\%
Severity	2012.2	$0.109(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.184(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.002)$	0.903	+11.53\%
Severity	2013.1	0.116 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	0.160 ($\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.003$)	0.924	+12.30\%
Severity	2013.2	0.119 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.169(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.003)$	0.918	+12.66\%
Severity	2014.1	0.129 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.140 ($\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.003)$	0.949	+13.72\%
Severity	2014.2	$0.134(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.154(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.001$)	0.952	+14.31\%
Severity	2015.1	0.140 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	0.137 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.002$)	0.958	+14.99\%
Severity	2015.2	0.143 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	0.145 ($\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.002$)	0.952	+15.33\%
Severity	2016.1	0.147 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000$)	$0.133(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.006)$	0.952	+15.87\%
Severity	2016.2	0.147 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000$)	$0.132(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.011)$	0.937	+15.85\%
Frequency	2004.1	$-0.006(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.054)$	$-0.001(\mathrm{Cl}=+/-0.067 ; p=0.975)$	0.051	-0.60\%
Frequency	2004.2	$-0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.122)$	$0.006(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.865$)	0.015	-0.49\%
Frequency	2005.1	$-0.005(\mathrm{Cl}=+/-0.007 ; ~ p=0.172)$	$0.004(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.917)$	-0.001	-0.46\%
Frequency	2005.2	$-0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.140)$	$0.000(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.997$)	0.008	-0.52\%
Frequency	2006.1	$-0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.144)$	$0.001(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.968)$	0.007	-0.54\%
Frequency	2006.2	$-0.007(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.074)$	$-0.007(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.852)$	0.044	-0.69\%
Frequency	2007.1	$-0.007(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.078)$	$-0.005(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.899)$	0.043	-0.73\%
Frequency	2007.2	$-0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.049)$	$-0.011(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.763)$	0.072	-0.86\%
Frequency	2008.1	$-0.009(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.042)$	$-0.007(\mathrm{Cl}=+/-0.079 ; p=0.862)$	0.084	-0.94\%
Frequency	2008.2	$-0.008(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.094)$	$0.000(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.996)$	0.035	-0.81\%
Frequency	2009.1	$-0.010(\mathrm{Cl}=+/-0.010 ; p=0.056)$	$0.008(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.837)$	0.070	-0.98\%
Frequency	2009.2	$-0.008(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.129)$	0.016 ($\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.693$)	0.024	-0.81\%
Frequency	2010.1	-0.010 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.099)$	$0.022(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.597)$	0.043	-0.95\%
Frequency	2010.2	$-0.013(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.029)$	$0.008(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.848)$	0.128	-1.29\%
Frequency	2011.1	$-0.017(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.004)$	$0.026(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.494)$	0.272	-1.72\%
Frequency	2011.2	$-0.015(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.017$)	$0.037(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.334)$	0.209	-1.45\%
Frequency	2012.1	$-0.014(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.030)$	$0.036(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.370)$	0.161	-1.43\%
Frequency	2012.2	$-0.013(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.062)$	$0.039(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.347)$	0.127	-1.33\%
Frequency	2013.1	$-0.011(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.139)$	$0.032(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.454)$	0.041	-1.14\%
Frequency	2013.2	$-0.012(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.162)$	$0.031(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.500)$	0.034	-1.19\%
Frequency	2014.1	$-0.009(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.335)$	$0.021(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.653)$	-0.054	-0.89\%
Frequency	2014.2	$-0.007(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.484)$	$0.026(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.601)$	-0.081	-0.72\%
Frequency	2015.1	$-0.009(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.451$)	$0.031(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.566)$	-0.082	-0.88\%
Frequency	2015.2	$-0.008(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.568$)	$0.034(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.555)$	-0.101	-0.76\%
Frequency	2016.1	$-0.008(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.594)$	$0.036(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.568)$	-0.123	-0.83\%
Frequency	2016.2	$-0.001(\mathrm{Cl}=+/-0.037 ; p=0.957)$	$0.052(\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.428)$	-0.123	-0.09\%

Coverage $=C M$
End Trend Period $=2019.2$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.011(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.089)$	$0.132(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.027)$	0.184	+1.09\%
Loss Cost	2004.2	$0.013(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.059)$	$0.142(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.020)$	0.209	+1.28\%
Loss Cost	2005.1	$0.014(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.060)$	$0.138(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.029)$	0.211	+1.36\%
Loss Cost	2005.2	$0.014(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.064$)	$0.141(\mathrm{Cl}=+/-0.127 ; \mathrm{p}=0.030)$	0.200	+1.43\%
Loss Cost	2006.1	$0.017(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.039)$	$0.128(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.051)$	0.218	+1.71\%
Loss Cost	2006.2	$0.018(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.044)$	$0.131(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.054)$	0.203	+1.79\%
Loss Cost	2007.1	0.020 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.033$)	$0.120(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.084$)	0.219	+2.04\%
Loss Cost	2007.2	$0.023(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.026)$	$0.131(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.068)$	0.236	+2.29\%
Loss Cost	2008.1	$0.025(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.023)$	$0.121(\mathrm{Cl}=+/-0.147 ; \mathrm{p}=0.102)$	0.247	+2.53\%
Loss Cost	2008.2	0.035 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.001$)	$0.159(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.016)$	0.471	+3.54\%
Loss Cost	2009.1	$0.037(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.001)$	$0.150(\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.027)$	0.478	+3.77\%
Loss Cost	2009.2	0.047 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.185(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.002)$	0.666	+4.80\%
Loss Cost	2010.1	0.050 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000$)	0.173 ($\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.005$)	0.681	+5.17\%
Loss Cost	2010.2	$0.051(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.174(\mathrm{Cl}=+/-0.120 ; p=0.007)$	0.637	+5.22\%
Loss Cost	2011.1	0.049 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.001$)	$0.181(\mathrm{Cl}=+/-0.128 ; \mathrm{p}=0.009)$	0.618	+5.00\%
Loss Cost	2011.2	0.060 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	0.214 ($\mathrm{Cl}=+/-0.107 ; ~ p=0.001$)	0.763	+6.23\%
Loss Cost	2012.1	$0.062(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$0.209(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.002$)	0.760	+6.43\%
Loss Cost	2012.2	$0.063(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.210 ($\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.003$)	0.709	+6.49\%
Loss Cost	2013.1	0.075 ($\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000$)	$0.179(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.006$)	0.790	+7.81\%
Loss Cost	2013.2	$0.074(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.001$)	$0.176(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.011$)	0.725	+7.65\%
Loss Cost	2014.1	$0.096(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.129(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.005)$	0.914	+10.03\%
Loss Cost	2014.2	0.104 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000$)	$0.144(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.002)$	0.922	+10.91\%
Loss Cost	2015.1	$0.108(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	$0.135(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.007$)	0.920	+11.45\%
Loss Cost	2015.2	0.108 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000$)	$0.133(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.016)$	0.878	+11.35\%
Loss Cost	2016.1	$0.109(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.003$)	$0.130(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.040$)	0.857	+11.57\%
Loss Cost	2016.2	$0.110(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.016)$	$0.131(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.078)$	0.765	+11.65\%
Severity	2004.1	$0.014(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.020)$	$0.160(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.005$)	0.312	+1.42\%
Severity	2004.2	$0.014(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.025)$	$0.162(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.006)$	0.291	+1.46\%
Severity	2005.1	$0.014(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.036)$	$0.162(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.008)$	0.288	+1.45\%
Severity	2005.2	0.016 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.030)$	$0.169(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.007$)	0.296	+1.61\%
Severity	2006.1	0.019 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.017$)	$0.157(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.014$)	0.316	+1.88\%
Severity	2006.2	0.022 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.009$)	0.170 ($\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.008$)	0.355	+2.18\%
Severity	2007.1	$0.024(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.007$)	$0.159(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.015)$	0.372	+2.44\%
Severity	2007.2	$0.029(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.002)$	0.178 ($\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.007$)	0.444	+2.91\%
Severity	2008.1	$0.032(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.002)$	$0.165(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.013$)	0.468	+3.24\%
Severity	2008.2	0.040 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.195(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.002$)	0.621	+4.06\%
Severity	2009.1	$0.044(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.178(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.003$)	0.657	+4.52\%
Severity	2009.2	$0.051(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.203(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.000)$	0.750	+5.28\%
Severity	2010.1	$0.056(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.186(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.001$)	0.784	+5.81\%
Severity	2010.2	$0.063(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.208(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.000)$	0.839	+6.55\%
Severity	2011.1	$0.069(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.191(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.000)$	0.863	+7.11\%
Severity	2011.2	$0.077(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.214(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.000)$	0.911	+7.96\%
Severity	2012.1	$0.078(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.211(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.000)$	0.907	+8.08\%
Severity	2012.2	$0.078(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.211(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.000)$	0.882	+8.09\%
Severity	2013.1	0.085 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000$)	$0.192(\mathrm{Cl}=+/-0.080 ; p=0.000)$	0.910	+8.92\%
Severity	2013.2	$0.087(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.196(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.001$)	0.887	+9.12\%
Severity	2014.1	$0.101(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.166 ($\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.000$)	0.951	+10.62\%
Severity	2014.2	$0.108(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.179(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.000)$	0.958	+11.41\%
Severity	2015.1	$0.114(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.167(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.000$)	0.964	+12.13\%
Severity	2015.2	$0.117(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	$0.171(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.001$)	0.948	+12.38\%
Severity	2016.1	$0.118(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.168(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.004$)	0.940	+12.55\%
Severity	2016.2	$0.108(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.003)$	$0.156(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.011$)	0.905	+11.37\%
Frequency	2004.1	$-0.003(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.323)$	$-0.028(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.373)$	-0.002	-0.33\%
Frequency	2004.2	-0.002 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.605$)	$-0.020(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.523)$	-0.046	-0.18\%
Frequency	2005.1	-0.001 ($\mathrm{Cl}=+/-0.007 ; p=0.806$)	$-0.024(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.443)$	-0.047	-0.09\%
Frequency	2005.2	-0.002 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.645$)	$-0.028(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.379)$	-0.036	-0.18\%
Frequency	2006.1	-0.002 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.681$)	$-0.029(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.392)$	-0.039	-0.17\%
Frequency	2006.2	-0.004 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.354$)	$-0.039(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.243)$	0.012	-0.39\%
Frequency	2007.1	-0.004 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.387)$	$-0.038(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.266)$	0.009	-0.40\%
Frequency	2007.2	$-0.006(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.209)$	$-0.047(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.176)$	0.063	-0.60\%
Frequency	2008.1	-0.007 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.188)$	$-0.044(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.228)$	0.067	-0.69\%
Frequency	2008.2	-0.005 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.366$)	$-0.036(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.323)$	-0.005	-0.50\%
Frequency	2009.1	$-0.007(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.229)$	$-0.028(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.456)$	0.014	-0.71\%
Frequency	2009.2	-0.005 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.463$)	$-0.019(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.618)$	-0.063	-0.45\%
Frequency	2010.1	$-0.006(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.374$)	$-0.013(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.735)$	-0.055	-0.61\%
Frequency	2010.2	$-0.013(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.051)$	$-0.034(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.318)$	0.163	-1.25\%
Frequency	2011.1	$-0.020(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.001$)	$-0.010(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.676)$	0.495	-1.97\%
Frequency	2011.2	$-0.016(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.003)$	$0.000(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.989)$	0.394	-1.60\%
Frequency	2012.1	-0.015 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.011$)	$-0.002(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.939)$	0.313	-1.52\%
Frequency	2012.2	-0.015 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.027$)	$-0.001(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.974$)	0.236	-1.48\%
Frequency	2013.1	$-0.010(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.124)$	$-0.012(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.628)$	0.089	-1.02\%
Frequency	2013.2	$-0.014(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.074$)	$-0.019(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.463)$	0.175	-1.35\%
Frequency	2014.1	-0.005 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.385$)	$-0.037(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.099)$	0.202	-0.53\%
Frequency	2014.2	$-0.005(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.537)$	$-0.036(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.147)$	0.090	-0.45\%
Frequency	2015.1	-0.006 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.508$)	$-0.033(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.230)$	0.063	-0.61\%
Frequency	2015.2	-0.009 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.420$)	$-0.037(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.222)$	0.071	-0.91\%
Frequency	2016.1	-0.009 ($\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.565$)	$-0.038(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.294)$	0.024	-0.87\%
Frequency	2016.2	$0.003(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.880)$	$-0.025(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.482)$	-0.297	+0.26\%

Coverage $=C M$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, scalar_level_change, seasonality
Scalar Level Change Start Date $=$ 2021-07-01

Fit	Start Date	Time	Seasonality	Scalar Shift	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.017 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.004$)	$0.119(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.031)$	0.716 ($\mathrm{Cl}=+/-0.225 ; \mathrm{p}=0.000$)	0.722	+1.69\%
Loss Cost	2004.2	$0.019(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.002)$	$0.129(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.021$)	$0.702(\mathrm{Cl}=+/-0.226 ; p=0.000)$	0.731	+1.88\%
Loss Cost	2005.1	$0.020(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.002)$	$0.123(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.031)$	$0.696(\mathrm{Cl}=+/-0.229 ; p=0.000)$	0.733	+1.99\%
Loss Cost	2005.2	$0.021(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.003)$	$0.128(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.030)$	$0.690(\mathrm{Cl}=+/-0.234 ; p=0.000)$	0.730	+2.08\%
Loss Cost	2006.1	0.023 (Cl $=+/-0.013 ; \mathrm{p}=0.001$)	0.116 ($\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.049)$	0.676 ($\mathrm{Cl}=+/-0.232 ; \mathrm{p}=0.000$)	0.745	+2.34\%
Loss Cost	2006.2	$0.024(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.002)$	0.120 ($\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.047$)	$0.670(\mathrm{Cl}=+/-0.237 ; p=0.000)$	0.741	+2.44\%
Loss Cost	2007.1	0.027 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001$)	0.110 ($\mathrm{Cl}=+/-0.120 ; p=0.072$)	0.658 ($\mathrm{Cl}=+/-0.238 ; \mathrm{p}=0.000$)	0.751	+2.69\%
Loss Cost	2007.2	$0.029(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.001)$	$0.120(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.053)$	0.643 ($\mathrm{Cl}=+/-0.241 ; \mathrm{p}=0.000$)	0.756	+2.94\%
Loss Cost	2008.1	$0.031(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001$)	$0.111(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.079)$	0.632 ($\mathrm{Cl}=+/-0.243 ; \mathrm{p}=0.000$)	0.762	+3.18\%
Loss Cost	2008.2	0.040 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.145 ($\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.010$)	$0.583(\mathrm{Cl}=+/-0.207 ; p=0.000)$	0.837	+4.04\%
Loss Cost	2009.1	$0.042(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.137(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.017)$	$0.574(\mathrm{Cl}=+/-0.210 ; p=0.000)$	0.840	+4.26\%
Loss Cost	2009.2	$0.050(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.167(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.001)$	0.529 ($\mathrm{Cl}=+/-0.178 ; \mathrm{p}=0.000$)	0.893	+5.11\%
Loss Cost	2010.1	$0.053(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.157(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.002)$	0.517 ($\mathrm{Cl}=+/-0.178 ; \mathrm{p}=0.000$)	0.897	+5.42\%
Loss Cost	2010.2	$0.053(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.159(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.003)$	0.515 ($\mathrm{Cl}=+/-0.185 ; \mathrm{p}=0.000$)	0.890	+5.47\%
Loss Cost	2011.1	$0.052(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.162(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.004)$	$0.519(\mathrm{Cl}=+/-0.191 ; \mathrm{p}=0.000$)	0.885	+5.36\%
Loss Cost	2011.2	$0.061(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.189(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.000)$	0.477 ($\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.000$)	0.920	+6.29\%
Loss Cost	2012.1	$0.063(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.185(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.001$)	$0.471(\mathrm{Cl}=+/-0.171 ; \mathrm{p}=0.000$)	0.918	+6.48\%
Loss Cost	2012.2	0.063 (Cl $=+/-0.021 ; \mathrm{p}=0.000)$	0.185 ($\mathrm{Cl}=+/-0.100 ; p=0.001$)	0.471 ($\mathrm{Cl}=+/-0.180 ; p=0.000$)	0.910	+6.48\%
Loss Cost	2013.1	$0.071(\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.164(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.002$)	0.445 ($\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.000$)	0.929	+7.35\%
Loss Cost	2013.2	$0.069(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.160 ($\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.004$)	$0.452(\mathrm{Cl}=+/-0.176 ; \mathrm{p}=0.000)$	0.921	+7.17\%
Loss Cost	2014.1	$0.082(\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.134(\mathrm{Cl}=+/-0.080 ; p=0.003)$	0.416 ($\mathrm{Cl}=+/-0.140 ; p=0.000$)	0.954	+8.50\%
Loss Cost	2014.2	0.085 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000$)	0.141 ($\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.003$)	0.403 ($\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.000$)	0.951	+8.88\%
Loss Cost	2015.1	$0.085(\mathrm{Cl}=+/-0.027 ; p=0.000)$	$0.141(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.006)$	$0.402(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.000)$	0.947	+8.91\%
Loss Cost	2015.2	$0.082(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	$0.134(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.012)$	$0.414(\mathrm{Cl}=+/-0.172 ; \mathrm{p}=0.000)$	0.939	+8.53\%
Loss Cost	2016.1	0.079 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.001$)	0.139 ($\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.017$)	0.420 ($\mathrm{Cl}=+/-0.186 ; \mathrm{p}=0.001$)	0.934	+8.22\%
Loss Cost	2016.2	0.075 ($\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.005$)	$0.133(\mathrm{Cl}=+/-0.120 ; p=0.034)$	$0.431(\mathrm{Cl}=+/-0.208 ; \mathrm{p}=0.001$)	0.923	+7.80\%
Severity	2004.1	$0.026(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.125 ($\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.036$)	$0.592(\mathrm{Cl}=+/-0.243 ; p=0.000)$	0.701	+2.59\%
Severity	2004.2	$0.026(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.129(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.035)$	0.586 ($\mathrm{Cl}=+/-0.248 ; \mathrm{p}=0.000$)	0.696	+2.66\%
Severity	2005.1	$0.027(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.125(\mathrm{Cl}=+/-0.123 ; p=0.046)$	$0.582(\mathrm{Cl}=+/-0.252 ; \mathrm{p}=0.000)$	0.695	+2.75\%
Severity	2005.2	0.029 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.134(\mathrm{Cl}=+/-0.125 ; p=0.036)$	0.568 ($\mathrm{Cl}=+/-0.255 ; \mathrm{p}=0.000$)	0.699	+2.95\%
Severity	2006.1	$0.032(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.120(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.059)$	$0.552(\mathrm{Cl}=+/-0.252 ; \mathrm{p}=0.000)$	0.718	+3.26\%
Severity	2006.2	0.035 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.135(\mathrm{Cl}=+/-0.125 ; p=0.036)$	$0.531(\mathrm{Cl}=+/-0.251 ; \mathrm{p}=0.000)$	0.733	+3.59\%
Severity	2007.1	$0.038(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.121(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.058)$	$0.516(\mathrm{Cl}=+/-0.249 ; p=0.000)$	0.747	+3.91\%
Severity	2007.2	$0.043(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.141(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.026)$	0.488 ($\mathrm{Cl}=+/-0.242 ; \mathrm{p}=0.000$)	0.772	+4.38\%
Severity	2008.1	$0.047(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.126(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.045)$	$0.471(\mathrm{Cl}=+/-0.239 ; \mathrm{p}=0.000)$	0.788	+4.76\%
Severity	2008.2	$0.054(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.155(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.008)$	$0.429(\mathrm{Cl}=+/-0.214 ; \mathrm{p}=0.000)$	0.839	+5.51\%
Severity	2009.1	$0.058(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.137(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.015$)	$0.409(\mathrm{Cl}=+/-0.206 ; \mathrm{p}=0.000$)	0.859	+6.01\%
Severity	2009.2	$0.065(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.161(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.003)$	0.373 ($\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.000$)	0.888	+6.70\%
Severity	2010.1	0.070 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.144(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.005)$	$0.352(\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.000)$	0.906	+7.25\%
Severity	2010.2	0.076 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	0.165 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.001$)	0.321 ($\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.001$)	0.923	+7.90\%
Severity	2011.1	$0.081(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.148 ($\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.001$)	$0.301(\mathrm{Cl}=+/-0.152 ; \mathrm{p}=0.001$)	0.936	+8.48\%
Severity	2011.2	$0.088(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.168(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.000)$	0.270 ($\mathrm{Cl}=+/-0.137 ; \mathrm{p}=0.001$)	0.951	+9.18\%
Severity	2012.1	0.090 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.161(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.000)$	$0.261(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.001$)	0.951	+9.47\%
Severity	2012.2	0.091 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	0.163 ($\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.001$)	0.259 ($\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.002$)	0.944	+9.53\%
Severity	2013.1	$0.098(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.145 ($\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.001$)	$0.236(\mathrm{Cl}=+/-0.130 ; p=0.001)$	0.958	+10.31\%
Severity	2013.2	$0.100(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	0.149 ($\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.001$)	0.229 ($\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.003$)	0.952	+10.50\%
Severity	2014.1	0.110 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.127(\mathrm{Cl}=+/-0.059 ; p=0.000)$	$0.199(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.001$)	0.976	+11.67\%
Severity	2014.2	0.115 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.137(\mathrm{Cl}=+/-0.059 ; p=0.000)$	$0.182(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.002$)	0.976	+12.19\%
Severity	2015.1	$0.121(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.126(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.000)$	0.167 ($\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.003$)	0.979	+12.84\%
Severity	2015.2	$0.121(\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.127(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.001$)	0.165 ($\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.006$)	0.974	+12.90\%
Severity	2016.1	0.125 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000$)	$0.122(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.002)$	$0.157(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.012)$	0.973	+13.30\%
Severity	2016.2	0.118 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000$)	$0.111(\mathrm{Cl}=+/-0.069 ; p=0.005)$	0.176 ($\mathrm{Cl}=+/-0.120 ; p=0.009$)	0.968	+12.53\%
Frequency	2004.1	$-0.009(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.011)$	$-0.006(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.849)$	$0.124(\mathrm{Cl}=+/-0.136 ; p=0.073)$	0.113	-0.88\%
Frequency	2004.2	-0.008 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.031$)	$0.000(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.998)$	0.116 ($\mathrm{Cl}=+/-0.137 ; \mathrm{p}=0.094$)	0.069	-0.77\%
Frequency	2005.1	$-0.007(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.048)$	$-0.001(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.968)$	$0.114(\mathrm{Cl}=+/-0.139 ; p=0.104)$	0.050	-0.74\%
Frequency	2005.2	$-0.008(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.034)$	$-0.006(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.849)$	$0.121(\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.088)$	0.069	-0.84\%
Frequency	2006.1	$-0.009(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.035)$	$-0.004(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.906$)	$0.124(\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.088$)	0.071	-0.89\%
Frequency	2006.2	$-0.011(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.012)$	$-0.014(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.678)$	$0.138(\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.053$)	0.132	-1.11\%
Frequency	2007.1	$-0.012(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.012)$	$-0.011(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.750)$	$0.142(\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.052)$	0.136	-1.17\%
Frequency	2007.2	$-0.014(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.005$)	$-0.020(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.568)$	0.155 ($\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.034$)	0.187	-1.37\%
Frequency	2008.1	$-0.015(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.004$)	$-0.015(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.688)$	$0.161(\mathrm{Cl}=+/-0.144 ; \mathrm{p}=0.030)$	0.209	-1.51\%
Frequency	2008.2	$-0.014(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.012)$	$-0.010(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.795)$	$0.154(\mathrm{Cl}=+/-0.147 ; \mathrm{p}=0.041$)	0.154	-1.40\%
Frequency	2009.1	$-0.017(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.005$)	$0.000(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.996)$	0.165 ($\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.028$)	0.212	-1.64\%
Frequency	2009.2	$-0.015(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.016)$	$0.006(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.879$)	0.156 ($\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.040$)	0.155	-1.49\%
Frequency	2010.1	$-0.017(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.010)$	$0.013(\mathrm{Cl}=+/-0.080 ; p=0.729)$	0.165 ($\mathrm{Cl}=+/-0.149 ; \mathrm{p}=0.032$)	0.193	-1.71\%
Frequency	2010.2	$-0.023(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.001)$	$-0.006(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.866$)	$0.194(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.007$)	0.363	-2.26\%
Frequency	2011.1	$-0.029(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.627)$	0.218 ($\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.000$)	0.597	-2.87\%
Frequency	2011.2	$-0.027(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.021(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.467)$	0.206 ($\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.001$)	0.547	-2.65\%
Frequency	2012.1	$-0.028(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.023(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.439)$	$0.209(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.001$)	0.522	-2.73\%
Frequency	2012.2	$-0.028(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.022(\mathrm{Cl}=+/-0.066 ; p=0.491)$	0.212 ($\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.001$)	0.498	-2.78\%
Frequency	2013.1	$-0.027(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.002)$	0.020 ($\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.559$)	$0.209(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.002$)	0.435	-2.68\%
Frequency	2013.2	$-0.031(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001)$	$0.011(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.746)$	$0.222(\mathrm{Cl}=+/-0.127 ; \mathrm{p}=0.002$)	0.466	-3.02\%
Frequency	2014.1	$-0.029(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.006)$	$0.007(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.843)$	0.217 ($\mathrm{Cl}=+/-0.133 ; \mathrm{p}=0.003$)	0.399	-2.84\%
Frequency	2014.2	$-0.030(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.012)$	$0.005(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.902)$	$0.221(\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.005$)	0.374	-2.95\%
Frequency	2015.1	$-0.035(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.008)$	0.015 ($\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.707$)	0.235 ($\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.004$)	0.426	-3.48\%
Frequency	2015.2	$-0.039(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.011)$	$0.007(\mathrm{Cl}=+/-0.090 ; p=0.860)$	0.248 ($\mathrm{Cl}=+/-0.156 ; p=0.005$)	0.431	-3.87\%
Frequency	2016.1	$-0.046(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.011)$	$0.017(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.697)$	0.263 ($\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.005$)	0.462	-4.48\%
Frequency	2016.2	$-0.043(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.041)$	$0.021(\mathrm{Cl}=+/-0.105 ; ~ p=0.657)$	0.255 ($\mathrm{Cl}=+/-0.183 ; \mathrm{p}=0.012$)	0.406	-4.20\%

Coverage $=C M$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality, mobility

Fit	Start Date	Time	Seasonality	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.028 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.002$)	$0.163(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.043)$	-0.005 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.219$)	0.407	+2.80\%
Loss Cost	2004.2	0.030 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001$)	$0.177(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.031$)	-0.005 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.252$)	0.428	+3.08\%
Loss Cost	2005.1	$0.032(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.001)$	$0.167(\mathrm{Cl}=+/-0.164 ; \mathrm{p}=0.046)$	-0.005 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.296$)	0.433	+3.27\%
Loss Cost	2005.2	$0.034(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.001)$	0.176 ($\mathrm{Cl}=+/-0.167 ; \mathrm{p}=0.039$)	$-0.004(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.329)$	0.433	+3.47\%
Loss Cost	2006.1	$0.038(\mathrm{Cl}=+/-0.020 ; p=0.001)$	$0.157(\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.067$)	-0.004 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.412$)	0.455	+3.84\%
Loss Cost	2006.2	0.040 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.001$)	$0.167(\mathrm{Cl}=+/-0.173 ; \mathrm{p}=0.058)$	-0.003 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.453$)	0.455	+4.08\%
Loss Cost	2007.1	$0.044(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.150(\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.094)$	-0.003 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.547)$	0.472	+4.46\%
Loss Cost	2007.2	0.047 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.165(\mathrm{Cl}=+/-0.178 ; \mathrm{p}=0.068$)	-0.002 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.612$)	0.490	+4.86\%
Loss Cost	2008.1	$0.051(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	0.148 ($\mathrm{Cl}=+/-0.183 ; \mathrm{p}=0.108$)	-0.002 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.716$)	0.503	+5.27\%
Loss Cost	2008.2	$0.061(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.183(\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.031)$	-0.001 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.867$)	0.618	+6.28\%
Loss Cost	2009.1	0.065 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	0.166 ($\mathrm{Cl}=+/-0.170 ; p=0.055$)	0.000 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.986$)	0.627	+6.71\%
Loss Cost	2009.2	0.075 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.199(\mathrm{Cl}=+/-0.154 ; \mathrm{p}=0.013$)	$0.001(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.827$)	0.716	+7.74\%
Loss Cost	2010.1	0.080 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$0.178(\mathrm{Cl}=+/-0.157 ; \mathrm{p}=0.028)$	$0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.676)$	0.730	+8.32\%
Loss Cost	2010.2	$0.083(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	$0.188(\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.024)$	$0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.632)$	0.717	+8.66\%
Loss Cost	2011.1	$0.085(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000)$	$0.181(\mathrm{Cl}=+/-0.170 ; p=0.037)$	$0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.606)$	0.705	+8.85\%
Loss Cost	2011.2	$0.096(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.213 ($\mathrm{Cl}=+/-0.154 ; \mathrm{p}=0.009$)	$0.003(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.428)$	0.774	+10.05\%
Loss Cost	2012.1	$0.101(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	$0.194(\mathrm{Cl}=+/-0.160 ; p=0.020)$	$0.003(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.341$)	0.779	+10.68\%
Loss Cost	2012.2	$0.106(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.000)$	$0.205(\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.018$)	$0.004(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.317$)	0.764	+11.13\%
Loss Cost	2013.1	$0.119(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.000)$	$0.162(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.042)$	$0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.145$)	0.815	+12.68\%
Loss Cost	2013.2	$0.123(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$0.172(\mathrm{Cl}=+/-0.163 ; \mathrm{p}=0.040)$	$0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.142)$	0.795	+13.10\%
Loss Cost	2014.1	0.143 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	0.115 ($\mathrm{Cl}=+/-0.135 ; \mathrm{p}=0.089$)	$0.007(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.024$)	0.878	+15.39\%
Loss Cost	2014.2	$0.152(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	0.135 ($\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.044$)	$0.007(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.015$)	0.888	+16.40\%
Loss Cost	2015.1	$0.162(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	$0.109(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.100)$	$0.008(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.009$)	0.897	+17.59\%
Loss Cost	2015.2	$0.167(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000)$	$0.121(\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.084)$	$0.008(\mathrm{Cl}=+/-0.006 ; p=0.010)$	0.885	+18.20\%
Loss Cost	2016.1	0.178 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.000)$	0.095 ($\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.179$)	0.009 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.007$)	0.890	+19.50\%
Loss Cost	2016.2	$0.185(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.000)$	$0.110(\mathrm{Cl}=+/-0.154 ; \mathrm{p}=0.140)$	$0.009(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.009)$	0.881	+20.32\%
Severity	2004.1	0.028 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.179(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.013)$	$-0.010(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.008)$	0.582	+2.88\%
Severity	2004.2	0.030 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.185(\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.012)$	-0.010 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.010$)	0.577	+3.01\%
Severity	2005.1	$0.031(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.001)$	$0.180(\mathrm{Cl}=+/-0.146 ; \mathrm{p}=0.017)$	-0.010 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.014$)	0.575	+3.10\%
Severity	2005.2	$0.033(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.191(\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.013$)	$-0.010(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.017$)	0.584	+3.35\%
Severity	2006.1	$0.036(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.173(\mathrm{Cl}=+/-0.149 ; \mathrm{p}=0.024)$	-0.009 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.025$)	0.603	+3.71\%
Severity	2006.2	0.040 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.189(\mathrm{Cl}=+/-0.149 ; \mathrm{p}=0.014)$	-0.009 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.031$)	0.626	+4.09\%
Severity	2007.1	$0.044(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.173(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.027)$	-0.008 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.045$)	0.641	+4.46\%
Severity	2007.2	$0.049(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.193(\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.012)$	$-0.007(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.054)$	0.677	+4.99\%
Severity	2008.1	$0.053(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.174(\mathrm{Cl}=+/-0.149 ; \mathrm{p}=0.025)$	$-0.007(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.079)$	0.694	+5.44\%
Severity	2008.2	$0.061(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.202(\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.005$)	-0.006 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.085$)	0.760	+6.25\%
Severity	2009.1	$0.066(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.178(\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.012)$	$-0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.130)$	0.782	+6.83\%
Severity	2009.2	0.073 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.203(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.003)$	-0.005 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.147)$	0.824	+7.59\%
Severity	2010.1	$0.079(\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.178(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.007$)	-0.004 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.224$)	0.844	+8.26\%
Severity	2010.2	0.086 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	0.200 ($\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.002$)	-0.003 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.261$)	0.870	+8.99\%
Severity	2011.1	0.093 ($\mathrm{Cl}=+/-0.020 ; p=0.000)$	$0.176(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.004)$	-0.002 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.390)$	0.886	+9.71\%
Severity	2011.2	0.100 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$0.197(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.001$)	-0.002 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.457)$	0.909	+10.50\%
Severity	2012.1	$0.104(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.183(\mathrm{Cl}=+/-0.107 ; ~ \mathrm{p}=0.002)$	-0.001 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.584$)	0.909	+10.94\%
Severity	2012.2	0.106 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.190 ($\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.002$)	$-0.001(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.629)$	0.899	+11.19\%
Severity	2013.1	0.115 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.161(\mathrm{Cl}=+/-0.105 ; ~ p=0.005)$	$0.000(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.908)$	0.919	+12.22\%
Severity	2013.2	$0.119(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.170 ($\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.004$)	$0.000(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.967$)	0.912	+12.62\%
Severity	2014.1	$0.132(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.133(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.007$)	$0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.577$)	0.946	+14.12\%
Severity	2014.2	$0.138(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.147 ($\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.003$)	$0.001(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.482$)	0.950	+14.80\%
Severity	2015.1	0.147 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.124(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.006)$	$0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.255)$	0.960	+15.83\%
Severity	2015.2	$0.150(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.131(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.006)$	$0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.249)$	0.954	+16.21\%
Severity	2016.1	$0.158(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$0.113(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.016)$	$0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.159)$	0.957	+17.10\%
Severity	2016.2	$0.158(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	$0.112(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.027)$	$0.002(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.182)$	0.943	+17.07\%
Frequency	2004.1	$-0.001(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.801)$	$-0.015(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.608)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.004)$	0.241	-0.08\%
Frequency	2004.2	$0.001(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.830)$	$-0.008(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.783)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.002$)	0.241	+0.07\%
Frequency	2005.1	$0.002(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.642)$	$-0.013(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.669)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.002$)	0.242	+0.16\%
Frequency	2005.2	$0.001(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.758)$	$-0.015(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.625)$	$0.005(\mathrm{Cl}=+/-0.003 ; p=0.002)$	0.245	+0.11\%
Frequency	2006.1	$0.001(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.737)$	$-0.016(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.617)$	$0.005(\mathrm{Cl}=+/-0.003 ; p=0.003)$	0.242	+0.13\%
Frequency	2006.2	$0.000(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.966)$	$-0.022(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.488)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.004)$	0.266	-0.02\%
Frequency	2007.1	$0.000(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.995)$	$-0.023(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.492)$	$0.005(\mathrm{Cl}=+/-0.004 ; p=0.004)$	0.262	0.00\%
Frequency	2007.2	$-0.001(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.786)$	$-0.028(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.415)$	0.005 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.006$)	0.278	-0.12\%
Frequency	2008.1	$-0.002(\mathrm{Cl}=+/-0.010 ; p=0.727)$	$-0.026(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.469)$	$0.005(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.008)$	0.278	-0.17\%
Frequency	2008.2	$0.000(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.950)$	$-0.018(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.605)$	$0.005(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.006$)	0.266	+0.03\%
Frequency	2009.1	$-0.001(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.831)$	$-0.012(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.740)$	$0.005(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.009$)	0.275	-0.11\%
Frequency	2009.2	$0.001(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.803)$	$-0.003(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.924)$	$0.005(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.006$)	0.273	+0.14\%
Frequency	2010.1	$0.001(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.923)$	$0.000(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.993)$	0.005 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.009$)	0.273	+0.06\%
Frequency	2010.2	$-0.003(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.610)$	$-0.012(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.741)$	$0.005(\mathrm{Cl}=+/-0.004 ; p=0.009)$	0.343	-0.31\%
Frequency	2011.1	$-0.008(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.197)$	$0.006(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.871)$	$0.004(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.014$)	0.438	-0.79\%
Frequency	2011.2	$-0.004(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.492)$	$0.017(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.609)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.007$)	0.440	-0.41\%
Frequency	2012.1	-0.002 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.721)$	$0.011(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.751)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.007$)	0.419	-0.23\%
Frequency	2012.2	$-0.001(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.939)$	0.016 ($\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.656$)	0.005 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.007$)	0.409	-0.05\%
Frequency	2013.1	$0.004(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.582)$	$0.001(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.969)$	$0.005(\mathrm{Cl}=+/-0.003 ; p=0.003)$	0.417	+0.41\%
Frequency	2013.2	$0.004(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.606)$	$0.002(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.964)$	$0.005(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.004)$	0.409	+0.42\%
Frequency	2014.1	$0.011(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.196)$	$-0.018(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.619)$	0.006 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.001$)	0.468	+1.11\%
Frequency	2014.2	$0.014(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.138)$	$-0.011(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.756)$	$0.006(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.002$)	0.477	+1.39\%
Frequency	2015.1	$0.015(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.162)$	$-0.015(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.713)$	$0.006(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.002$)	0.471	+1.52\%
Frequency	2015.2	$0.017(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.157)$	$-0.010(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.805)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.003$)	0.467	+1.71\%
Frequency	2016.1	$0.020(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.151)$	$-0.018(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.693)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.005$)	0.467	+2.05\%
Frequency	2016.2	$0.027(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.066)$	$-0.002(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.959)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.004)$	0.530	+2.77\%

Fit	Start Date	Time	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	0.032 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	0.542	+3.29\%
Loss Cost	2004.2	$0.034(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.547	+3.42\%
Loss Cost	2005.1	0.035 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.547	+3.54\%
Loss Cost	2005.2	$0.036(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.550	+3.68\%
Loss Cost	2006.1	$0.039(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.582	+3.95\%
Loss Cost	2006.2	0.040 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	0.574	+4.04\%
Loss Cost	2007.1	$0.042(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.585	+4.26\%
Loss Cost	2007.2	$0.044(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.606	+4.53\%
Loss Cost	2008.1	$0.047(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.626	+4.82\%
Loss Cost	2008.2	$0.050(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.652	+5.16\%
Loss Cost	2009.1	$0.053(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.673	+5.49\%
Loss Cost	2009.2	$0.057(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.698	+5.88\%
Loss Cost	2010.1	0.060 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.699	+6.14\%
Loss Cost	2010.2	$0.060(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.675	+6.18\%
Loss Cost	2011.1	$0.061(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.658	+6.31\%
Loss Cost	2011.2	$0.063(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	0.642	+6.48\%
Loss Cost	2012.1	$0.064(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.618	+6.59\%
Loss Cost	2012.2	0.060 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000$)	0.563	+6.23\%
Loss Cost	2013.1	$0.061(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	0.526	+6.26\%
Loss Cost	2013.2	$0.056(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.001$)	0.455	+5.80\%
Loss Cost	2014.1	$0.059(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.002)$	0.435	+6.06\%
Loss Cost	2014.2	$0.058(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.005$)	0.379	+5.96\%
Loss Cost	2015.1	$0.057(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.013)$	0.320	+5.83\%
Loss Cost	2015.2	$0.054(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.034)$	0.247	+5.53\%
Loss Cost	2016.1	$0.050(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.081)$	0.168	+5.10\%
Loss Cost	2016.2	0.043 ($\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.180)$	0.080	+4.41\%
Severity	2004.1	$0.038(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.874	+3.90\%
Severity	2004.2	$0.039(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.868	+3.94\%
Severity	2005.1	$0.039(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.868	+4.03\%
Severity	2005.2	0.040 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.860	+4.06\%
Severity	2006.1	$0.041(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.863	+4.18\%
Severity	2006.2	0.041 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.854	+4.20\%
Severity	2007.1	$0.042(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.845	+4.24\%
Severity	2007.2	$0.042(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.832	+4.25\%
Severity	2008.1	$0.043(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.834	+4.38\%
Severity	2008.2	0.045 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.842	+4.57\%
Severity	2009.1	0.047 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	0.865	+4.84\%
Severity	2009.2	0.048 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.860	+4.94\%
Severity	2010.1	$0.051(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.873	+5.18\%
Severity	2010.2	$0.053(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.886	+5.44\%
Severity	2011.1	$0.056(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.909	+5.78\%
Severity	2011.2	0.057 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.905	+5.91\%
Severity	2012.1	$0.059(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.906	+6.11\%
Severity	2012.2	0.058 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.891	+5.99\%
Severity	2013.1	$0.060(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.885	+6.15\%
Severity	2013.2	0.059 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.866	+6.03\%
Severity	2014.1	$0.061(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.865	+6.29\%
Severity	2014.2	$0.061(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.841	+6.27\%
Severity	2015.1	$0.064(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.845	+6.64\%
Severity	2015.2	$0.064(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.816	+6.64\%
Severity	2016.1	$0.066(\mathrm{Cl}=+/-0.020 ; p=0.000)$	0.796	+6.86\%
Severity	2016.2	$0.066(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.752	+6.81\%
Frequency	2004.1	$-0.006(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.093)$	0.051	-0.59\%
Frequency	2004.2	$-0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.165$)	0.027	-0.50\%
Frequency	2005.1	$-0.005(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.218)$	0.016	-0.47\%
Frequency	2005.2	$-0.004(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.350)$	-0.003	-0.37\%
Frequency	2006.1	$-0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.586)$	-0.022	-0.22\%
Frequency	2006.2	$-0.001(\mathrm{Cl}=+/-0.009 ; p=0.730)$	-0.028	-0.15\%
Frequency	2007.1	$0.000(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.975$)	-0.033	+0.01\%
Frequency	2007.2	$0.003(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.557)$	-0.022	+0.27\%
Frequency	2008.1	$0.004(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.387)$	-0.008	+0.42\%
Frequency	2008.2	$0.006(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.265$)	0.010	+0.57\%
Frequency	2009.1	$0.006(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.251)$	0.014	+0.63\%
Frequency	2009.2	$0.009(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.115)$	0.060	+0.90\%
Frequency	2010.1	$0.009(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.139)$	0.051	+0.91\%
Frequency	2010.2	$0.007(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.280)$	0.009	+0.70\%
Frequency	2011.1	$0.005(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.462)$	-0.020	+0.50\%
Frequency	2011.2	$0.005(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.468)$	-0.021	+0.54\%
Frequency	2012.1	$0.005(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.576)$	-0.033	+0.46\%
Frequency	2012.2	$0.002(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.794)$	-0.049	+0.23\%
Frequency	2013.1	$0.001(\mathrm{Cl}=+/-0.020 ; p=0.919)$	-0.055	+0.10\%
Frequency	2013.2	$-0.002(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.840)$	-0.056	-0.21\%
Frequency	2014.1	$-0.002(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.850)$	-0.060	-0.22\%
Frequency	2014.2	$-0.003(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.826)$	-0.063	-0.29\%
Frequency	2015.1	$-0.008(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.608)$	-0.051	-0.76\%
Frequency	2015.2	$-0.010(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.539)$	-0.045	-1.04\%
Frequency	2016.1	$-0.017(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.393)$	-0.017	-1.65\%
Frequency	2016.2	$-0.023(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.314)$	0.009	-2.24\%

Coverage $=A P$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.032(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.078(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.142)$	0.558	+3.25\%
Loss Cost	2004.2	$0.034(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.088(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.102)$	0.569	+3.42\%
Loss Cost	2005.1	$0.034(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.083(\mathrm{Cl}=+/-0.110 ; p=0.131)$	0.565	+3.50\%
Loss Cost	2005.2	0.036 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.093(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.095$)	0.575	+3.68\%
Loss Cost	2006.1	$0.038(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.081(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.149)$	0.597	+3.90\%
Loss Cost	2006.2	0.040 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	$0.088(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.123)$	0.594	+4.04\%
Loss Cost	2007.1	$0.041(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.079(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.172)$	0.598	+4.21\%
Loss Cost	2007.2	$0.044(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.095 ($\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.100$)	0.630	+4.53\%
Loss Cost	2008.1	0.047 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.084(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.151$)	0.641	+4.76\%
Loss Cost	2008.2	0.050 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.102(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.075)$	0.681	+5.16\%
Loss Cost	2009.1	$0.053(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.090(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.119)$	0.692	+5.42\%
Loss Cost	2009.2	$0.057(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.110(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.052)$	0.732	+5.88\%
Loss Cost	2010.1	$0.059(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.103(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.077$)	0.727	+6.05\%
Loss Cost	2010.2	$0.060(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.108(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.074)$	0.707	+6.18\%
Loss Cost	2011.1	$0.060(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.107(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.089)$	0.689	+6.19\%
Loss Cost	2011.2	$0.063(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.118(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.071)$	0.682	+6.48\%
Loss Cost	2012.1	$0.062(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.119(\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.082)$	0.659	+6.44\%
Loss Cost	2012.2	$0.060(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.113(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.113)$	0.601	+6.23\%
Loss Cost	2013.1	$0.059(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$0.118(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.116)$	0.568	+6.07\%
Loss Cost	2013.2	$0.056(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.001$)	$0.110(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.159)$	0.491	+5.80\%
Loss Cost	2014.1	$0.057(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.002)$	$0.109(\mathrm{Cl}=+/-0.169 ; \mathrm{p}=0.190)$	0.464	+5.84\%
Loss Cost	2014.2	$0.058(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.005$)	$0.112(\mathrm{Cl}=+/-0.181 ; \mathrm{p}=0.205)$	0.409	+5.96\%
Loss Cost	2015.1	$0.054(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.016$)	$0.124(\mathrm{Cl}=+/-0.194 ; \mathrm{p}=0.191)$	0.361	+5.52\%
Loss Cost	2015.2	$0.054(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.032)$	$0.124(\mathrm{Cl}=+/-0.209 ; \mathrm{p}=0.221)$	0.284	+5.53\%
Loss Cost	2016.1	0.045 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.101$)	0.146 ($\mathrm{Cl}=+/-0.224 ; \mathrm{p}=0.181$)	0.234	+4.63\%
Loss Cost	2016.2	$0.043(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.172)$	$0.141(\mathrm{Cl}=+/-0.246 ; \mathrm{p}=0.230)$	0.130	+4.41\%
Severity	2004.1	$0.038(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.065(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.011$)	0.892	+3.87\%
Severity	2004.2	0.039 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.069(\mathrm{Cl}=+/-0.050 ; p=0.008)$	0.890	+3.94\%
Severity	2005.1	0.039 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.066(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.012)$	0.888	+3.99\%
Severity	2005.2	0.040 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.070 ($\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.009$)	0.884	+4.06\%
Severity	2006.1	$0.041(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.065(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.016)$	0.883	+4.15\%
Severity	2006.2	$0.041(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.068(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.014)$	0.877	+4.20\%
Severity	2007.1	$0.041(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.068(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.018$)	0.868	+4.20\%
Severity	2007.2	0.042 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.071(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.017$)	0.859	+4.25\%
Severity	2008.1	0.042 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.066(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.028)$	0.856	+4.34\%
Severity	2008.2	0.045 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.077(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.009)$	0.874	+4.57\%
Severity	2009.1	0.047 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.067(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.018)$	0.889	+4.78\%
Severity	2009.2	0.048 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.073(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.010)$	0.890	+4.94\%
Severity	2010.1	$0.050(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.065(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.020)$	0.896	+5.12\%
Severity	2010.2	$0.053(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.078(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.003)$	0.921	+5.44\%
Severity	2011.1	0.055 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.068(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.005$)	0.935	+5.70\%
Severity	2011.2	$0.057(\mathrm{Cl}=+/-0.007 ; ~ p=0.000)$	0.075 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.002$)	0.939	+5.91\%
Severity	2012.1	$0.058(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.071(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.004)$	0.936	+6.01\%
Severity	2012.2	0.058 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.070 ($\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.007$)	0.925	+5.99\%
Severity	2013.1	0.059 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.068(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.011$)	0.918	+6.04\%
Severity	2013.2	$0.059(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.068(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.016$)	0.902	+6.03\%
Severity	2014.1	0.060 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.064(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.030)$	0.896	+6.17\%
Severity	2014.2	$0.061(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.067(\mathrm{Cl}=+/-0.060 ; p=0.033)$	0.879	+6.27\%
Severity	2015.1	$0.063(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.061(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.061$)	0.874	+6.49\%
Severity	2015.2	$0.064(\mathrm{Cl}=+/-0.016 ; p=0.000)$	$0.064(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.063$)	0.853	+6.64\%
Severity	2016.1	$0.064(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$0.064(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.087$)	0.831	+6.65\%
Severity	2016.2	$0.066(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.067(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.097$)	0.795	+6.81\%
Frequency	2004.1	$-0.006(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.094)$	$0.013(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.727$)	0.027	-0.59\%
Frequency	2004.2	$-0.005(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.170)$	$0.019(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.628)$	0.006	-0.50\%
Frequency	2005.1	$-0.005(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.217)$	$0.017(\mathrm{Cl}=+/-0.080 ; p=0.665)$	-0.008	-0.48\%
Frequency	2005.2	$-0.004(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.355$)	$0.023(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.563)$	-0.023	-0.37\%
Frequency	2006.1	$-0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.579)$	0.015 ($\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.710$)	-0.050	-0.23\%
Frequency	2006.2	$-0.001(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.734)$	0.020 ($\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.638$)	-0.055	-0.15\%
Frequency	2007.1	$0.000(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.987$)	$0.011(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.793$)	-0.066	+0.01\%
Frequency	2007.2	$0.003(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.562)$	$0.025(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.552)$	-0.045	+0.27\%
Frequency	2008.1	$0.004(\mathrm{Cl}=+/-0.010 ; p=0.408)$	$0.017(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.677)$	-0.038	+0.40\%
Frequency	2008.2	$0.006(\mathrm{Cl}=+/-0.010 ; p=0.271)$	$0.025(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.553)$	-0.014	+0.57\%
Frequency	2009.1	$0.006(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.273$)	$0.023(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.598)$	-0.014	+0.61\%
Frequency	2009.2	$0.009(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.117$)	$0.036(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.406$)	0.049	+0.90\%
Frequency	2010.1	$0.009(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.157)$	$0.037(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.413)$	0.039	+0.88\%
Frequency	2010.2	$0.007(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.287)$	$0.030(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.522)$	-0.016	+0.70\%
Frequency	2011.1	$0.005(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.504)$	0.040 ($\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.409$)	-0.033	+0.46\%
Frequency	2011.2	$0.005(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.471$)	$0.043(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.394)$	-0.033	+0.54\%
Frequency	2012.1	$0.004(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.629)$	$0.048(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.357)$	-0.039	+0.40\%
Frequency	2012.2	$0.002(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.796)$	$0.043(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.435)$	-0.069	+0.23\%
Frequency	2013.1	$0.000(\mathrm{Cl}=+/-0.020 ; p=0.981)$	$0.050(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.385)$	-0.067	+0.02\%
Frequency	2013.2	$-0.002(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.842)$	$0.042(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.479)$	-0.087	-0.21\%
Frequency	2014.1	$-0.003(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.799)$	0.045 ($\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.477$)	-0.092	-0.31\%
Frequency	2014.2	$-0.003(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.829)$	0.046 ($\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.499$)	-0.101	-0.29\%
Frequency	2015.1	-0.009 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.546$)	$0.063(\mathrm{Cl}=+/-0.147 ; \mathrm{p}=0.370)$	-0.061	-0.91\%
Frequency	2015.2	$-0.010(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.545)$	$0.060(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.426)$	-0.071	-1.04\%
Frequency	2016.1	$-0.019(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.330)$	$0.082(\mathrm{Cl}=+/-0.166 ; \mathrm{p}=0.303)$	-0.003	-1.89\%
Frequency	2016.2	$-0.023(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.320)$	$0.074(\mathrm{Cl}=+/-0.181 ; \mathrm{p}=0.385)$	-0.007	-2.24\%

Coverage $=A P$
End Trend Period = 2021.1
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.024(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.068 ($\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.154$)	0.444	+2.43\%
Loss Cost	2004.2	0.025 ($\mathrm{Cl}=+/-0.010 ; p=0.000$)	$0.076(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.119)$	0.453	+2.57\%
Loss Cost	2005.1	0.026 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	$0.074(\mathrm{Cl}=+/-0.100 ; p=0.141)$	0.444	+2.61\%
Loss Cost	2005.2	0.027 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.082(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.110)$	0.451	+2.77\%
Loss Cost	2006.1	0.029 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.072(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.165)$	0.477	+2.97\%
Loss Cost	2006.2	0.030 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	$0.077(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.150)$	0.464	+3.07\%
Loss Cost	2007.1	$0.032(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.070 ($\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.196$)	0.467	+3.20\%
Loss Cost	2007.2	0.035 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.085(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.120)$	0.505	+3.52\%
Loss Cost	2008.1	0.037 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.076(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.170)$	0.516	+3.72\%
Loss Cost	2008.2	$0.041(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.095 ($\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.089$)	0.566	+4.14\%
Loss Cost	2009.1	$0.043(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.085(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.132)$	0.577	+4.37\%
Loss Cost	2009.2	$0.048(\mathrm{Cl}=+/-0.016 ; p=0.000)$	$0.105(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.060)$	0.630	+4.87\%
Loss Cost	2010.1	0.049 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.101(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.081$)	0.618	+4.98\%
Loss Cost	2010.2	0.049 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	$0.103(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.090)$	0.579	+5.04\%
Loss Cost	2011.1	0.048 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000$)	$0.107(\mathrm{Cl}=+/-0.127 ; \mathrm{p}=0.096$)	0.550	+4.95\%
Loss Cost	2011.2	$0.051(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.115(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.088)$	0.528	+5.21\%
Loss Cost	2012.1	0.049 ($\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.001$)	$0.121(\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.088)$	0.492	+5.00\%
Loss Cost	2012.2	$0.044(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.005$)	$0.107(\mathrm{Cl}=+/-0.148 ; \mathrm{p}=0.144)$	0.382	+4.52\%
Loss Cost	2013.1	0.040 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.016$)	$0.118(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.123)$	0.337	+4.09\%
Loss Cost	2013.2	$0.033(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.060)$	$0.099(\mathrm{Cl}=+/-0.162 ; \mathrm{p}=0.207)$	0.188	+3.40\%
Loss Cost	2014.1	$0.031(\mathrm{Cl}=+/-0.040 ; p=0.121)$	$0.106(\mathrm{Cl}=+/-0.174 ; \mathrm{p}=0.207)$	0.154	+3.12\%
Loss Cost	2014.2	$0.028(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.223)$	$0.099(\mathrm{Cl}=+/-0.190 ; p=0.277)$	0.048	+2.80\%
Loss Cost	2015.1	$0.017(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.495$)	$0.122(\mathrm{Cl}=+/-0.197 ; \mathrm{p}=0.197)$	0.033	+1.69\%
Loss Cost	2015.2	$0.009(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.760$)	$0.105(\mathrm{Cl}=+/-0.217 ; \mathrm{p}=0.302$)	-0.076	+0.88\%
Loss Cost	2016.1	$-0.013(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.658)$	0.145 ($\mathrm{Cl}=+/-0.210 ; \mathrm{p}=0.150$)	0.070	-1.31\%
Loss Cost	2016.2	$-0.033(\mathrm{Cl}=+/-0.078 ; \mathrm{p}=0.342)$	$0.108(\mathrm{Cl}=+/-0.223 ; \mathrm{p}=0.290$)	0.086	-3.29\%
Severity	2004.1	$0.033(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.057(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.003)$	0.913	+3.37\%
Severity	2004.2	$0.034(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.060(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.002)$	0.909	+3.42\%
Severity	2005.1	$0.034(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$0.058(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.004)$	0.906	+3.46\%
Severity	2005.2	$0.034(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$0.061(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.004$)	0.899	+3.50\%
Severity	2006.1	0.035 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$0.058(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.006$)	0.898	+3.56\%
Severity	2006.2	0.035 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.059(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.007$)	0.887	+3.58\%
Severity	2007.1	0.035 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.060(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.008$)	0.878	+3.54\%
Severity	2007.2	0.035 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.060(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.010$)	0.863	+3.55\%
Severity	2008.1	0.035 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.058(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.016$)	0.858	+3.60\%
Severity	2008.2	$0.038(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.068(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.004)$	0.880	+3.83\%
Severity	2009.1	0.040 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.059(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.007$)	0.900	+4.03\%
Severity	2009.2	$0.041(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.064(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.004)$	0.897	+4.16\%
Severity	2010.1	0.042 ($\mathrm{Cl}=+/-0.006 ; p=0.000)$	$0.058(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.008)$	0.904	+4.32\%
Severity	2010.2	0.046 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.071(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	0.939	+4.66\%
Severity	2011.1	0.048 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.062(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.957	+4.91\%
Severity	2011.2	0.050 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.068(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.961	+5.09\%
Severity	2012.1	0.050 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.066(\mathrm{Cl}=+/-0.030 ; p=0.000)$	0.958	+5.15\%
Severity	2012.2	0.049 ($\mathrm{Cl}=+/-0.006 ; p=0.000$)	$0.061(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000)$	0.952	+4.98\%
Severity	2013.1	0.048 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	0.063 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.001$)	0.945	+4.94\%
Severity	2013.2	0.046 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.057(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.002)$	0.935	+4.74\%
Severity	2014.1	0.046 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.057(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.004)$	0.926	+4.76\%
Severity	2014.2	0.045 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.054(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.008)$	0.903	+4.63\%
Severity	2015.1	0.046 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.052(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.016)$	0.891	+4.70\%
Severity	2015.2	$0.044(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.049 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.034$)	0.847	+4.53\%
Severity	2016.1	$0.041(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.055 ($\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.023$)	0.829	+4.17\%
Severity	2016.2	0.037 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001$)	$0.047(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.055$)	0.743	+3.72\%
Frequency	2004.1	$-0.009(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.024)$	$0.011(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.783)$	0.098	-0.91\%
Frequency	2004.2	$-0.008(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.051)$	$0.016(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.693)$	0.067	-0.83\%
Frequency	2005.1	$-0.008(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.068)$	0.015 ($\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.711$)	0.051	-0.82\%
Frequency	2005.2	$-0.007(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.130)$	$0.021(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.617)$	0.024	-0.71\%
Frequency	2006.1	$-0.006(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.245)$	$0.014(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.748)$	-0.016	-0.57\%
Frequency	2006.2	$-0.005(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.345)$	0.018 ($\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.688$)	-0.031	-0.49\%
Frequency	2007.1	$-0.003(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.545)$	$0.010(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.824)$	-0.059	-0.33\%
Frequency	2007.2	0.000 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.964$)	$0.025(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.579)$	-0.066	-0.03\%
Frequency	2008.1	$0.001(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.845)$	0.019 ($\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.686$)	-0.074	+0.11\%
Frequency	2008.2	$0.003(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.630)$	$0.027(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.566)$	-0.062	+0.30\%
Frequency	2009.1	$0.003(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.630)$	$0.026(\mathrm{Cl}=+/-0.100 ; p=0.596)$	-0.065	+0.33\%
Frequency	2009.2	$0.007(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.333)$	$0.041(\mathrm{Cl}=+/-0.100 ; p=0.403)$	-0.018	+0.69\%
Frequency	2010.1	$0.006(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.411$)	$0.043(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.401)$	-0.026	+0.64\%
Frequency	2010.2	$0.004(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.653)$	$0.033(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.532)$	-0.073	+0.37\%
Frequency	2011.1	$0.000(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.965$)	0.045 ($\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.407$)	-0.068	+0.04\%
Frequency	2011.2	$0.001(\mathrm{Cl}=+/-0.020 ; p=0.911)$	$0.047(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.408)$	-0.072	+0.11\%
Frequency	2012.1	$-0.001(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.897$)	$0.055(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.356)$	-0.064	-0.14\%
Frequency	2012.2	$-0.004(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.713$)	$0.045(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.466)$	-0.079	-0.44\%
Frequency	2013.1	$-0.008(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.540)$	$0.056(\mathrm{Cl}=+/-0.135 ; \mathrm{p}=0.392)$	-0.054	-0.80\%
Frequency	2013.2	$-0.013(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.388)$	$0.042(\mathrm{Cl}=+/-0.143 ; \mathrm{p}=0.535)$	-0.046	-1.28\%
Frequency	2014.1	$-0.016(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.351)$	$0.050(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.494$)	-0.042	-1.57\%
Frequency	2014.2	$-0.018(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.371)$	$0.045(\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.569)$	-0.051	-1.75\%
Frequency	2015.1	$-0.029(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.181)$	0.070 ($\mathrm{Cl}=+/-0.170 ; \mathrm{p}=0.382$)	0.070	-2.88\%
Frequency	2015.2	$-0.036(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.173)$	$0.056(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.516)$	0.083	-3.50\%
Frequency	2016.1	$-0.054(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.063)$	$0.090(\mathrm{Cl}=+/-0.184 ; \mathrm{p}=0.291$)	0.282	-5.26\%
Frequency	2016.2	$-0.070(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.048)$	$0.061(\mathrm{Cl}=+/-0.199 ; \mathrm{p}=0.493)$	0.360	-6.76\%

Coverage $=A P$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, scalar_level_change, mobility
Scalar Level Change Start Date $=2022-07-01$

Fit	Start Date	Time	Mobility	Scalar Shift	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.034(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.137)$	0.370 ($\mathrm{Cl}=+/-0.327 ; \mathrm{p}=0.028$)	0.625	+3.41\%
Loss Cost	2004.2	$0.035(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.112)$	0.357 ($\mathrm{Cl}=+/-0.328 ; \mathrm{p}=0.034$)	0.632	+3.59\%
Loss Cost	2005.1	$0.037(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.093)$	$0.344(\mathrm{Cl}=+/-0.330 ; \mathrm{p}=0.042)$	0.635	+3.76\%
Loss Cost	2005.2	$0.039(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.075$)	$0.329(\mathrm{Cl}=+/-0.332 ; \mathrm{p}=0.052)$	0.640	+3.97\%
Loss Cost	2006.1	$0.043(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.006(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.039)$	$0.302(\mathrm{Cl}=+/-0.320 ; \mathrm{p}=0.064)$	0.678	+4.36\%
Loss Cost	2006.2	$0.044(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.006(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.035$)	0.290 ($\mathrm{Cl}=+/-0.324 ; \mathrm{p}=0.077$)	0.674	+4.53\%
Loss Cost	2007.1	$0.048(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.007(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.022)$	0.268 ($\mathrm{Cl}=+/-0.321 ; \mathrm{p}=0.098$)	0.692	+4.87\%
Loss Cost	2007.2	$0.052(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.007(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.011$)	0.240 ($\mathrm{Cl}=+/-0.311 ; \mathrm{p}=0.125$)	0.722	+5.30\%
Loss Cost	2008.1	$0.056(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.004$)	0.210 ($\mathrm{Cl}=+/-0.299 ; \mathrm{p}=0.161$)	0.753	+5.79\%
Loss Cost	2008.2	$0.062(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.001$)	0.175 ($\mathrm{Cl}=+/-0.279 ; \mathrm{p}=0.209$)	0.794	+6.37\%
Loss Cost	2009.1	$0.068(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$0.139(\mathrm{Cl}=+/-0.258 ; \mathrm{p}=0.277)$	0.831	+6.98\%
Loss Cost	2009.2	$0.074(\mathrm{Cl}=+/-0.013 ; p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$0.098(\mathrm{Cl}=+/-0.225 ; \mathrm{p}=0.376$)	0.878	+7.71\%
Loss Cost	2010.1	$0.080(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.067 ($\mathrm{Cl}=+/-0.206 ; p=0.510$)	0.900	+8.29\%
Loss Cost	2010.2	$0.082(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.053(\mathrm{Cl}=+/-0.209 ; p=0.606)$	0.897	+8.56\%
Loss Cost	2011.1	$0.086(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.012 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$0.029(\mathrm{Cl}=+/-0.203 ; p=0.768)$	0.903	+9.02\%
Loss Cost	2011.2	$0.092(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.192 ; \mathrm{p}=0.991$)	0.915	+9.60\%
Loss Cost	2012.1	$0.097(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.024(\mathrm{Cl}=+/-0.185 ; \mathrm{p}=0.784)$	0.923	+10.14\%
Loss Cost	2012.2	0.095 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	-0.016 ($\mathrm{Cl}=+/-0.192 ; \mathrm{p}=0.866$)	0.910	+9.94\%
Loss Cost	2013.1	$0.099(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	$-0.037(\mathrm{Cl}=+/-0.191 ; \mathrm{p}=0.685)$	0.911	+10.44\%
Loss Cost	2013.2	$0.097(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	-0.026 ($\mathrm{Cl}=+/-0.200 ; \mathrm{p}=0.784$)	0.896	+10.18\%
Loss Cost	2014.1	$0.106(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	-0.067 ($\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.427$)	0.924	+11.22\%
Loss Cost	2014.2	$0.111(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	-0.087 ($\mathrm{Cl}=+/-0.181 ; \mathrm{p}=0.316$)	0.923	+11.74\%
Loss Cost	2015.1	0.116 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	-0.108 ($\mathrm{Cl}=+/-0.186 ; \mathrm{p}=0.232$)	0.922	+12.32\%
Loss Cost	2015.2	$0.119(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	-0.119 ($\mathrm{Cl}=+/-0.200 ; \mathrm{p}=0.216$)	0.914	+12.65\%
Loss Cost	2016.1	$0.120(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.123(\mathrm{Cl}=+/-0.218 ; \mathrm{p}=0.238)$	0.903	+12.78\%
Loss Cost	2016.2	$0.117(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000)$	0.015 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	$-0.111(\mathrm{Cl}=+/-0.239 ; \mathrm{p}=0.319)$	0.891	+12.38\%
Severity	2004.1	$0.034(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.287)$	0.296 ($\mathrm{Cl}=+/-0.152 ; \mathrm{p}=0.000$)	0.908	+3.51\%
Severity	2004.2	0.035 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.317)$	$0.294(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.000$)	0.904	+3.54\%
Severity	2005.1	$0.036(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.380)$	$0.287(\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.001)$	0.903	+3.63\%
Severity	2005.2	$0.036(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.406)$	0.286 ($\mathrm{Cl}=+/-0.159 ; p=0.001$)	0.897	+3.65\%
Severity	2006.1	$0.037(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.501$)	0.277 ($\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.001$)	0.898	+3.78\%
Severity	2006.2	$0.037(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.508)$	0.277 ($\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.001$)	0.891	+3.77\%
Severity	2007.1	$0.037(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.537)$	0.276 ($\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.002$)	0.883	+3.80\%
Severity	2007.2	$0.037(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.527)$	0.278 ($\mathrm{Cl}=+/-0.169 ; p=0.002$)	0.874	+3.77\%
Severity	2008.1	$0.038(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.632)$	0.268 ($\mathrm{Cl}=+/-0.170 ; p=0.003$)	0.873	+3.91\%
Severity	2008.2	$0.041(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.786$)	0.255 ($\mathrm{Cl}=+/-0.168 ; \mathrm{p}=0.005$)	0.879	+4.13\%
Severity	2009.1	$0.044(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.000 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.945$)	0.233 ($\mathrm{Cl}=+/-0.155 ; \mathrm{p}=0.005$)	0.900	+4.49\%
Severity	2009.2	$0.045(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.862)$	$0.227(\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.007$)	0.895	+4.60\%
Severity	2010.1	0.048 (CI $=+/-0.009 ; p=0.000)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.618)$	$0.208(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.009$)	0.908	+4.94\%
Severity	2010.2	$0.052(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.383)$	$0.188(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.012)$	0.921	+5.31\%
Severity	2011.1	$0.057(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.124)$	$0.162(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.011$)	0.945	+5.81\%
Severity	2011.2	$0.058(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.089)$	$0.152(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.017$)	0.944	+6.01\%
Severity	2012.1	$0.062(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.041)$	$0.136(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.025$)	0.949	+6.34\%
Severity	2012.2	$0.060(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.065)$	0.144 ($\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.021$)	0.942	+6.16\%
Severity	2013.1	$0.062(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.043)$	$0.132(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.034)$	0.942	+6.43\%
Severity	2013.2	$0.061(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.067$)	0.140 ($\mathrm{Cl}=+/-0.125 ; p=0.030$)	0.932	+6.24\%
Severity	2014.1	$0.065(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.032)$	$0.121(\mathrm{Cl}=+/-0.121 ; \mathrm{p}=0.050)$	0.938	+6.70\%
Severity	2014.2	$0.065(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.044)$	0.122 ($\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.062$)	0.927	+6.67\%
Severity	2015.1	$0.071(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.014)$	$0.097(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.104)$	0.941	+7.35\%
Severity	2015.2	$0.071(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.020)$	$0.096(\mathrm{Cl}=+/-0.131 ; \mathrm{p}=0.134)$	0.929	+7.39\%
Severity	2016.1	$0.075(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.018)$	$0.082(\mathrm{Cl}=+/-0.137 ; \mathrm{p}=0.212)$	0.924	+7.80\%
Severity	2016.2	$0.074(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.030)$	0.085 ($\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.236$)	0.906	+7.71\%
Frequency	2004.1	$-0.001(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.804)$	$0.005(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.007$)	$0.074(\mathrm{Cl}=+/-0.230 ; \mathrm{p}=0.517)$	0.229	-0.10\%
Frequency	2004.2	$0.000(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.903)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.005$)	$0.063(\mathrm{Cl}=+/-0.229 ; \mathrm{p}=0.581$)	0.227	+0.05\%
Frequency	2005.1	$0.001(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.758)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.005$)	$0.057(\mathrm{Cl}=+/-0.232 ; \mathrm{p}=0.623)$	0.225	+0.13\%
Frequency	2005.2	$0.003(\mathrm{Cl}=+/-0.009 ; p=0.488)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.003$)	$0.043(\mathrm{Cl}=+/-0.231 ; \mathrm{p}=0.704)$	0.233	+0.31\%
Frequency	2006.1	$0.006(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.214)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001$)	$0.025(\mathrm{Cl}=+/-0.223 ; \mathrm{p}=0.822)$	0.263	+0.57\%
Frequency	2006.2	$0.007(\mathrm{Cl}=+/-0.010 ; p=0.130)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001$)	$0.013(\mathrm{Cl}=+/-0.224 ; \mathrm{p}=0.905)$	0.278	+0.73\%
Frequency	2007.1	$0.010(\mathrm{Cl}=+/-0.010 ; p=0.037)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	$-0.007(\mathrm{Cl}=+/-0.215 ; \mathrm{p}=0.944)$	0.331	+1.03\%
Frequency	2007.2	0.015 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.002$)	$0.008(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	$-0.037(\mathrm{Cl}=+/-0.188 ; \mathrm{p}=0.686)$	0.458	+1.48\%
Frequency	2008.1	$0.018(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	-0.058 ($\mathrm{Cl}=+/-0.177 ; \mathrm{p}=0.505$)	0.533	+1.80\%
Frequency	2008.2	$0.021(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	-0.080 ($\mathrm{Cl}=+/-0.164 ; \mathrm{p}=0.324$)	0.615	+2.15\%
Frequency	2009.1	$0.024(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	-0.094 ($\mathrm{Cl}=+/-0.161 ; \mathrm{p}=0.239)$	0.648	+2.38\%
Frequency	2009.2	$0.029(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	-0.129 ($\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.029$)	0.825	+2.97\%
Frequency	2010.1	$0.031(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.141 ($\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.014$)	0.846	+3.19\%
Frequency	2010.2	$0.030(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.136 ($\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.021$)	0.836	+3.09\%
Frequency	2011.1	$0.030(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.133 ($\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.028$)	0.826	+3.03\%
Frequency	2011.2	$0.033(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.151 ($\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.008$)	0.863	+3.38\%
Frequency	2012.1	$0.035(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.160 ($\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.006$)	0.870	+3.57\%
Frequency	2012.2	0.035 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.160 ($\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.009$)	0.863	+3.57\%
Frequency	2013.1	$0.037(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.169 ($\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.007$)	0.868	+3.77\%
Frequency	2013.2	$0.036(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.166 ($\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.011$)	0.862	+3.70\%
Frequency	2014.1	$0.041(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.189 ($\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.003)$	0.894	+4.24\%
Frequency	2014.2	$0.046(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.210 ($\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.001$)	0.918	+4.76\%
Frequency	2015.1	0.045 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.205 ($\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.002$)	0.916	+4.63\%
Frequency	2015.2	$0.048(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.215 ($\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.002$)	0.918	+4.91\%
Frequency	2016.1	$0.045(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	-0.205 ($\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.005$)	0.919	+4.62\%
Frequency	2016.2	$0.042(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.002)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	-0.196 ($\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.011$)	0.920	+4.34\%

Coverage $=A P$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, mobility

Fit	Start Date	Time	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.038(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.006(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.049)$	0.579	+3.88\%
Loss Cost	2004.2	0.040 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.006(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.038)$	0.590	+4.07\%
Loss Cost	2005.1	0.042 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	$0.006(\mathrm{Cl}=+/-0.006 ; p=0.031)$	0.596	+4.26\%
Loss Cost	2005.2	$0.044(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	$0.007(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.024)$	0.605	+4.48\%
Loss Cost	2006.1	$0.048(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.007(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.011$)	0.650	+4.87\%
Loss Cost	2006.2	0.049 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	$0.007(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.010$)	0.649	+5.05\%
Loss Cost	2007.1	$0.052(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.006$)	0.672	+5.38\%
Loss Cost	2007.2	$0.056(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.008(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.003$)	0.707	+5.80\%
Loss Cost	2008.1	$0.061(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.001$)	0.743	+6.26\%
Loss Cost	2008.2	$0.066(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000$)	0.789	+6.80\%
Loss Cost	2009.1	$0.071(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.829	+7.35\%
Loss Cost	2009.2	$0.077(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.011(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.879	+8.00\%
Loss Cost	2010.1	$0.082(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.902	+8.50\%
Loss Cost	2010.2	$0.084(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.900	+8.74\%
Loss Cost	2011.1	$0.087(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.907	+9.13\%
Loss Cost	2011.2	$0.092(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.919	+9.60\%
Loss Cost	2012.1	$0.096(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.926	+10.02\%
Loss Cost	2012.2	$0.094(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.915	+9.86\%
Loss Cost	2013.1	0.097 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.916	+10.23\%
Loss Cost	2013.2	0.095 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.902	+10.01\%
Loss Cost	2014.1	$0.102(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.926	+10.73\%
Loss Cost	2014.2	0.105 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.923	+11.03\%
Loss Cost	2015.1	$0.107(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.918	+11.33\%
Loss Cost	2015.2	$0.108(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000$)	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.909	+11.42\%
Loss Cost	2016.1	$0.108(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000$)	$0.014(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.898	+11.35\%
Loss Cost	2016.2	$0.104(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.000$)	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.889	+10.94\%
Severity	2004.1	$0.038(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.935)$	0.870	+3.88\%
Severity	2004.2	0.039 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.983$)	0.864	+3.94\%
Severity	2005.1	0.040 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.928$)	0.864	+4.04\%
Severity	2005.2	0.040 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.891$)	0.856	+4.09\%
Severity	2006.1	$0.041(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.778)$	0.859	+4.23\%
Severity	2006.2	0.042 ($\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000$)	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.762$)	0.849	+4.26\%
Severity	2007.1	0.042 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.728$)	0.840	+4.32\%
Severity	2007.2	0.042 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.725$)	0.827	+4.33\%
Severity	2008.1	$0.044(\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.624)$	0.829	+4.51\%
Severity	2008.2	0.046 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.496)$	0.838	+4.75\%
Severity	2009.1	0.050 ($\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.311$)	0.866	+5.10\%
Severity	2009.2	$0.051(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.267)$	0.862	+5.25\%
Severity	2010.1	$0.054(\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.158)$	0.879	+5.59\%
Severity	2010.2	$0.058(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.079)$	0.897	+5.95\%
Severity	2011.1	$0.062(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.018)$	0.927	+6.42\%
Severity	2011.2	$0.064(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.012)$	0.928	+6.64\%
Severity	2012.1	$0.067(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.005$)	0.935	+6.96\%
Severity	2012.2	$0.067(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.007$)	0.924	+6.88\%
Severity	2013.1	0.069 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.004)$	0.926	+7.17\%
Severity	2013.2	$0.069(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.006$)	0.912	+7.12\%
Severity	2014.1	0.073 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000$)	$0.004(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.002)$	0.923	+7.55\%
Severity	2014.2	$0.074(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.003)$	0.910	+7.63\%
Severity	2015.1	0.079 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	$0.004(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.001$)	0.931	+8.21\%
Severity	2015.2	0.080 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.004(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.001$)	0.919	+8.34\%
Severity	2016.1	$0.084(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.004(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.001$)	0.919	+8.73\%
Severity	2016.2	$0.084(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.004(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.002)$	0.901	+8.78\%
Frequency	2004.1	$0.000(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.989)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.003)$	0.242	0.00\%
Frequency	2004.2	$0.001(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.723$)	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.002)$	0.243	+0.13\%
Frequency	2005.1	$0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.591$)	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.002)$	0.243	+0.21\%
Frequency	2005.2	$0.004(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.358)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001$)	0.253	+0.37\%
Frequency	2006.1	$0.006(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.144)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001$)	0.285	+0.61\%
Frequency	2006.2	$0.008(\mathrm{Cl}=+/-0.009 ; p=0.085)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.302	+0.75\%
Frequency	2007.1	0.010 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.023$)	$0.007(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.354	+1.02\%
Frequency	2007.2	$0.014(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.001$)	$0.008(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.474	+1.41\%
Frequency	2008.1	0.017 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.008(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.543	+1.68\%
Frequency	2008.2	0.019 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.614	+1.96\%
Frequency	2009.1	$0.021(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.641	+2.14\%
Frequency	2009.2	0.026 ($\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.792	+2.61\%
Frequency	2010.1	$0.027(\mathrm{Cl}=+/-0.007 ; ~ p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.805	+2.76\%
Frequency	2010.2	$0.026(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.796	+2.64\%
Frequency	2011.1	0.025 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.788	+2.55\%
Frequency	2011.2	0.027 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.811	+2.78\%
Frequency	2012.1	0.028 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.810	+2.86\%
Frequency	2012.2	$0.027(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.804	+2.78\%
Frequency	2013.1	$0.028(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.802	+2.85\%
Frequency	2013.2	$0.027(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.799	+2.70\%
Frequency	2014.1	0.029 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.812	+2.95\%
Frequency	2014.2	$0.031(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.010(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.818	+3.16\%
Frequency	2015.1	$0.028(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.002$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.822	+2.88\%
Frequency	2015.2	$0.028(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.006)$	$0.010(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.820	+2.85\%
Frequency	2016.1	$0.024(\mathrm{Cl}=+/-0.020 ; p=0.024)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.834	+2.42\%
Frequency	2016.2	0.020 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.078$)	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.847	+1.98\%

Fit	Start Date	Time	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.029(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.501	+2.98\%
Loss Cost	2004.2	$0.031(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.510	+3.14\%
Loss Cost	2005.1	$0.032(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.513	+3.29\%
Loss Cost	2005.2	$0.034(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.521	+3.47\%
Loss Cost	2006.1	$0.038(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.578	+3.84\%
Loss Cost	2006.2	0.039 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.569	+3.97\%
Loss Cost	2007.1	0.042 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.595	+4.28\%
Loss Cost	2007.2	0.046 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.638	+4.70\%
Loss Cost	2008.1	$0.050(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.683	+5.16\%
Loss Cost	2008.2	$0.056(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.743	+5.72\%
Loss Cost	2009.1	$0.061(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.796	+6.32\%
Loss Cost	2009.2	$0.068(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.864	+7.04\%
Loss Cost	2010.1	$0.073(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.895	+7.60\%
Loss Cost	2010.2	$0.075(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.888	+7.81\%
Loss Cost	2011.1	$0.079(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.895	+8.23\%
Loss Cost	2011.2	$0.084(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.910	+8.78\%
Loss Cost	2012.1	$0.089(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.918	+9.28\%
Loss Cost	2012.2	0.085 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000$)	0.903	+8.90\%
Loss Cost	2013.1	0.089 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000$)	0.900	+9.32\%
Loss Cost	2013.2	$0.084(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.879	+8.76\%
Loss Cost	2014.1	$0.094(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.920	+9.82\%
Loss Cost	2014.2	$0.097(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.910	+10.20\%
Loss Cost	2015.1	$0.101(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.894	+10.62\%
Loss Cost	2015.2	$0.101(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	0.858	+10.65\%
Loss Cost	2016.1	$0.097(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.002)$	0.794	+10.18\%
Loss Cost	2016.2	$0.080(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.012)$	0.697	+8.33\%
Severity	2004.1	$0.033(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.856	+3.31\%
Severity	2004.2	$0.033(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.845	+3.32\%
Severity	2005.1	$0.033(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.842	+3.40\%
Severity	2005.2	$0.033(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.827	+3.40\%
Severity	2006.1	$0.035(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.829	+3.52\%
Severity	2006.2	$0.034(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.811	+3.49\%
Severity	2007.1	$0.034(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.792	+3.49\%
Severity	2007.2	$0.034(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.767	+3.43\%
Severity	2008.1	0.035 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.764	+3.56\%
Severity	2008.2	$0.037(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.774	+3.76\%
Severity	2009.1	0.040 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	0.819	+4.11\%
Severity	2009.2	$0.041(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.805	+4.19\%
Severity	2010.1	$0.044(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.830	+4.51\%
Severity	2010.2	$0.047(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.856	+4.86\%
Severity	2011.1	$0.052(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.909	+5.38\%
Severity	2011.2	$0.054(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.903	+5.54\%
Severity	2012.1	$0.057(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	0.910	+5.85\%
Severity	2012.2	$0.054(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.896	+5.55\%
Severity	2013.1	$0.056(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.889	+5.77\%
Severity	2013.2	$0.053(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.867	+5.40\%
Severity	2014.1	$0.056(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.873	+5.81\%
Severity	2014.2	$0.054(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.833	+5.55\%
Severity	2015.1	$0.061(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.861	+6.25\%
Severity	2015.2	$0.058(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.001$)	0.806	+5.97\%
Severity	2016.1	$0.060(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.003)$	0.754	+6.20\%
Severity	2016.2	$0.052(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.022)$	0.621	+5.34\%
Frequency	2004.1	$-0.003(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.428)$	-0.012	-0.31\%
Frequency	2004.2	$-0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.669)$	-0.028	-0.18\%
Frequency	2005.1	$-0.001(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.808)$	-0.033	-0.11\%
Frequency	2005.2	$0.001(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.891$)	-0.036	+0.06\%
Frequency	2006.1	$0.003(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.500)$	-0.020	+0.31\%
Frequency	2006.2	$0.005(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.346)$	-0.003	+0.47\%
Frequency	2007.1	$0.008(\mathrm{Cl}=+/-0.010 ; p=0.132)$	0.054	+0.77\%
Frequency	2007.2	$0.012(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.012)$	0.210	+1.22\%
Frequency	2008.1	0.015 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.002$)	0.320	+1.54\%
Frequency	2008.2	$0.019(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.445	+1.89\%
Frequency	2009.1	$0.021(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.491	+2.12\%
Frequency	2009.2	$0.027(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.775	+2.74\%
Frequency	2010.1	$0.029(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.802	+2.96\%
Frequency	2010.2	$0.028(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.769	+2.81\%
Frequency	2011.1	$0.027(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.728	+2.71\%
Frequency	2011.2	$0.030(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.796	+3.06\%
Frequency	2012.1	$0.032(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.794	+3.24\%
Frequency	2012.2	$0.031(\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.753	+3.18\%
Frequency	2013.1	$0.033(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.741	+3.36\%
Frequency	2013.2	$0.031(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.677	+3.19\%
Frequency	2014.1	$0.037(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.764	+3.78\%
Frequency	2014.2	$0.043(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.829	+4.40\%
Frequency	2015.1	0.040 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001$)	0.770	+4.12\%
Frequency	2015.2	$0.043(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.002)$	0.742	+4.42\%
Frequency	2016.1	$0.037(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.012)$	0.625	+3.75\%
Frequency	2016.2	$0.028(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.068)$	0.421	+2.84\%

Coverage $=A P$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality, mobility

Fit	Start Date	Time	Seasonality	Mobility	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	$0.037(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.064(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.219)$	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.074)$	0.586	+3.80\%
Loss Cost	2004.2	$0.039(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.074(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.156)$	$0.005(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.058)$	0.603	+4.01\%
Loss Cost	2005.1	$0.041(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.066(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.213)$	$0.006(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.049)$	0.603	+4.16\%
Loss Cost	2005.2	$0.043(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.077(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.149)$	$0.006(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.037)$	0.620	+4.40\%
Loss Cost	2006.1	$0.047(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.059(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.256)$	$0.007(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.019$)	0.654	+4.77\%
Loss Cost	2006.2	0.049 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.068(\mathrm{Cl}=+/-0.106 ; p=0.200)$	$0.007(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.016$)	0.657	+4.97\%
Loss Cost	2007.1	$0.051(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.054(\mathrm{Cl}=+/-0.107 ; ~ p=0.310)$	$0.007(\mathrm{Cl}=+/-0.006 ; p=0.010)$	0.673	+5.28\%
Loss Cost	2007.2	$0.056(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.070 ($\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.168$)	$0.008(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.005$)	0.717	+5.72\%
Loss Cost	2008.1	$0.060(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.052(\mathrm{Cl}=+/-0.100 ; p=0.295)$	$0.009(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.002$)	0.745	+6.15\%
Loss Cost	2008.2	$0.065(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.071(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.119)$	$0.009(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	0.801	+6.70\%
Loss Cost	2009.1	0.070 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.051(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.239)$	0.010 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.832	+7.22\%
Loss Cost	2009.2	$0.076(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.072 ($\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.049$)	0.010 ($\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000$)	0.893	+7.87\%
Loss Cost	2010.1	$0.080(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.055 ($\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.107$)	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.909	+8.33\%
Loss Cost	2010.2	$0.083(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.063(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.064)$	$0.011(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.911	+8.61\%
Loss Cost	2011.1	$0.086(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.052(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.124)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.914	+8.94\%
Loss Cost	2011.2	$0.090(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.065(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.036)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.933	+9.44\%
Loss Cost	2012.1	$0.093(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.055 ($\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.075$)	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.935	+9.78\%
Loss Cost	2012.2	$0.093(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.053(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.098)$	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.923	+9.70\%
Loss Cost	2013.1	0.095 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.045 ($\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.172$)	0.012 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.921	+9.99\%
Loss Cost	2013.2	$0.094(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.042(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.220)$	$0.012(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.906	+9.86\%
Loss Cost	2014.1	$0.100(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.024(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.455$)	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.924	+10.57\%
Loss Cost	2014.2	$0.103(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.031(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.349)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.922	+10.90\%
Loss Cost	2015.1	$0.105(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.026(\mathrm{Cl}=+/-0.075 ; \mathrm{p}=0.470)$	0.013 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.916	+11.12\%
Loss Cost	2015.2	$0.107(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	$0.029(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.449)$	$0.013(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.906	+11.27\%
Loss Cost	2016.1	$0.105(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$0.034(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.420)$	0.013 (Cl $=+/-0.003 ; p=0.000)$	0.895	+11.03\%
Loss Cost	2016.2	$0.102(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	$0.028(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.525)$	0.013 (Cl = +/-0.004; p = 0.000)	0.883	+10.76\%
Severity	2004.1	$0.037(\mathrm{Cl}=+/-0.005 ; \mathrm{p}=0.000)$	$0.067(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.011$)	$-0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.616)$	0.890	+3.80\%
Severity	2004.2	$0.038(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.071(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.008)$	-0.001 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.674$)	0.888	+3.88\%
Severity	2005.1	$0.039(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.067(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.013)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.745)$	0.884	+3.94\%
Severity	2005.2	$0.039(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$0.071(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.010$)	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.802$)	0.880	+4.02\%
Severity	2006.1	$0.040(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.066(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.019)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.907$)	0.880	+4.12\%
Severity	2006.2	$0.041(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.069(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.017)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.950)$	0.872	+4.19\%
Severity	2007.1	$0.041(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.069(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.021)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.953)$	0.864	+4.19\%
Severity	2007.2	$0.042(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.071(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.021$)	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.986)$	0.853	+4.25\%
Severity	2008.1	$0.043(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.066(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.036)$	$0.000(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.918)$	0.851	+4.36\%
Severity	2008.2	0.045 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	0.075 ($\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.013$)	0.000 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.767$)	0.869	+4.64\%
Severity	2009.1	0.048 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.063(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.029)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.531$)	0.886	+4.94\%
Severity	2009.2	$0.050(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.070 ($\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.017$)	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.447)$	0.888	+5.13\%
Severity	2010.1	$0.053(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.059(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.036)$	$0.001(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.296$)	0.897	+5.41\%
Severity	2010.2	$0.056(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.071(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.005$)	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.140)$	0.926	+5.80\%
Severity	2011.1	$0.060(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.057(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.011$)	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.036)$	0.945	+6.21\%
Severity	2011.2	$0.063(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	0.065 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.003$)	$0.002(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.016)$	0.953	+6.48\%
Severity	2012.1	$0.065(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.057(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.007$)	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.008)$	0.955	+6.72\%
Severity	2012.2	$0.065(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.057(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.010)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.010$)	0.947	+6.72\%
Severity	2013.1	$0.067(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.052(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.022)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.008)$	0.944	+6.91\%
Severity	2013.2	$0.067(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.053(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.027$)	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.010)$	0.933	+6.93\%
Severity	2014.1	0.070 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.044(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.063)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.006)$	0.936	+7.27\%
Severity	2014.2	$0.072(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.047(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.056)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.006)$	0.928	+7.43\%
Severity	2015.1	$0.076(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.035(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.132)$	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.002)$	0.939	+7.94\%
Severity	2015.2	$0.078(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.039 ($\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.109$)	$0.003(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.003)$	0.931	+8.14\%
Severity	2016.1	$0.081(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.033(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.200)$	$0.004(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.003)$	0.925	+8.42\%
Severity	2016.2	$0.082(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.036(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.196)$	$0.004(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.005$)	0.909	+8.56\%
Frequency	2004.1	$0.000(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.998)$	$-0.003(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.928)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.004)$	0.219	0.00\%
Frequency	2004.2	$0.001(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.733)$	$0.003(\mathrm{Cl}=+/-0.070 ; p=0.926)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.003$)	0.220	+0.13\%
Frequency	2005.1	$0.002(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.597)$	$-0.001(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.972)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.003)$	0.219	+0.21\%
Frequency	2005.2	$0.004(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.374)$	$0.006(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.869)$	$0.006(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.002$)	0.230	+0.37\%
Frequency	2006.1	$0.006(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.147)$	$-0.007(\mathrm{Cl}=+/-0.070 ; \mathrm{p}=0.847)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001$)	0.262	+0.62\%
Frequency	2006.2	$0.008(\mathrm{Cl}=+/-0.009 ; p=0.091)$	$-0.001(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.980)$	$0.007(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.001$)	0.278	+0.75\%
Frequency	2007.1	$0.010(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.023)$	$-0.015(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.666)$	$0.008(\mathrm{Cl}=+/-0.004 ; \mathrm{p}=0.000)$	0.336	+1.05\%
Frequency	2007.2	$0.014(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.001$)	$0.000(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.989)$	$0.008(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.455	+1.41\%
Frequency	2008.1	$0.017(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$-0.014(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.638)$	$0.008(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.529	+1.71\%
Frequency	2008.2	0.019 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$-0.004(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.881)$	0.009 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.599	+1.97\%
Frequency	2009.1	$0.022(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$-0.013(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.647)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.630	+2.18\%
Frequency	2009.2	$0.026(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.002(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.925)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.783	+2.61\%
Frequency	2010.1	$0.027(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.839)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.796	+2.78\%
Frequency	2010.2	$0.026(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$-0.008(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.708)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.788	+2.65\%
Frequency	2011.1	$0.025(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$-0.005(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.822)$	$0.009(\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000)$	0.778	+2.57\%
Frequency	2011.2	$0.027(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.001(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.972$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.801	+2.78\%
Frequency	2012.1	$0.028(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$-0.002(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.921)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.800	+2.87\%
Frequency	2012.2	0.028 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$-0.004(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.861$)	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.793	+2.80\%
Frequency	2013.1	$0.028(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$-0.007(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.794)$	0.010 ($\mathrm{Cl}=+/-0.002 ; \mathrm{p}=0.000$)	0.790	+2.88\%
Frequency	2013.2	$0.027(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$-0.010(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.700)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.788	+2.73\%
Frequency	2014.1	$0.030(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$-0.020(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.480)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.806	+3.07\%
Frequency	2014.2	$0.032(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.001)$	$-0.016(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.574)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.809	+3.23\%
Frequency	2015.1	$0.029(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.003)$	$-0.009(\mathrm{Cl}=+/-0.066 ; \mathrm{p}=0.761$)	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.809	+2.95\%
Frequency	2015.2	$0.029(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.008)$	$-0.011(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.751)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.806	+2.90\%
Frequency	2016.1	$0.024(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.039)$	$0.001(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.987)$	$0.009(\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000)$	0.818	+2.41\%
Frequency	2016.2	$0.020(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.094)$	$-0.008(\mathrm{Cl}=+/-0.080 ; \mathrm{p}=0.830)$	0.010 ($\mathrm{Cl}=+/-0.003 ; \mathrm{p}=0.000$)	0.831	+2.03\%

Fit	Start Date	Tim	ed R^2	Implied Trend Rate
Loss Cost	2004.1	-0.025 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.355	-2.52\%
Loss Cost	2004.2	$-0.028(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.385	-2.72\%
Loss Cost	2005.1	-0.029 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.385	-2.82\%
Loss Cost	2005.2	-0.032 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.436	-3.11\%
Loss Cost	2006.1	-0.034 ($\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.465	-3.35\%
Loss Cost	2006.2	-0.038 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.549	-3.77\%
Loss Cost	2007.1	-0.039 ($\mathrm{Cl}=+/-0.013 ; p=0.000)$	0.530	-3.80\%
Loss Cost	2007.2	-0.042 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.557	-4.07\%
Loss Cost	2008.1	-0.043 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.548	-4.18\%
Loss Cost	2008.2	-0.044 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	0.541	-4.31\%
Loss Cost	2009.1	$-0.042(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.497	-4.14\%
Loss Cost	2009.2	-0.043 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.471	-4.17\%
Loss Cost	2010.1	-0.038 ($\mathrm{Cl}=+/-0.019 ; p=0.000)$	0.408	-3.76\%
Loss Cost	2010.2	-0.035 ($\mathrm{Cl}=+/-0.020 ; p=0.001$)	0.348	-3.49\%
Loss Cost	2011.1	-0.030 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.006$)	0.266	-2.93\%
Loss Cost	2011.2	-0.025 ($\mathrm{Cl}=+/-0.021 ; p=0.023)$	0.186	-2.48\%
Loss Cost	2012.1	$-0.018(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.098)$	0.088	-1.75\%
Severity	2004.1	0.027 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.401	+2.73\%
Severity	2004.2	0.026 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.360	+2.59\%
Severity	2005.1	$0.024(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.315	+2.41\%
Severity	2005.2	0.020 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.001)$	0.255	+2.06\%
Severity	2006.1	0.016 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.006$)	0.189	+1.66\%
Severity	2006.2	$0.011(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.032)$	0.112	+1.11\%
Severity	2007.1	0.009 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.075$)	0.072	+0.95\%
Severity	2007.2	0.006 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.269$)	0.009	+0.55\%
Severity	2008.1	$0.002(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.691)$	-0.030	+0.19\%
Severity	2008.2	$-0.001(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.902)$	-0.036	-0.06\%
Severity	2009.1	$0.000(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.973)$	-0.038	+0.02\%
Severity	2009.2	0.000 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.931$)	-0.040	-0.05\%
Severity	2010.1	$0.001(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.904)$	-0.041	+0.07\%
Severity	2010.2	$0.003(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.691)$	-0.036	+0.26\%
Severity	2011.1	$0.004(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.575)$	-0.030	+0.39\%
Severity	2011.2	$0.006(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.414)$	-0.014	+0.61\%
Severity	2012.1	0.010 ($\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.191$)	0.038	+1.03\%
Frequency	2004.1	$-0.052(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.828	-5.11\%
Frequency	2004.2	-0.053 ($\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	0.822	-5.17\%
Frequency	2005.1	-0.052 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.807	-5.11\%
Frequency	2005.2	$-0.052(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	0.791	-5.07\%
Frequency	2006.1	-0.050 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.772	-4.92\%
Frequency	2006.2	-0.049 ($\mathrm{Cl}=+/-0.010 ; p=0.000)$	0.750	-4.82\%
Frequency	2007.1	-0.048 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.726	-4.71\%
Frequency	2007.2	$-0.047(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.699	-4.60\%
Frequency	2008.1	-0.045 ($\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.668	-4.36\%
Frequency	2008.2	$-0.043(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	0.635	-4.25\%
Frequency	2009.1	-0.042 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	0.600	-4.16\%
Frequency	2009.2	-0.042 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.568	-4.12\%
Frequency	2010.1	-0.039 ($\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	0.516	-3.83\%
Frequency	2010.2	$-0.038(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.473	-3.73\%
Frequency	2011.1	$-0.034(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.001)$	0.404	-3.31\%
Frequency	2011.2	-0.031 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.002$)	0.340	-3.07\%
Frequency	2012.1	-0.028 ($\mathrm{Cl}=+/-0.020 ; p=0.008$)	0.266	-2.75\%

Coverage $=U A$
End Trend Period $=2022.2$
Excluded Points = NA
Parameters Included: time, seasonality

Fit	Start Date	Time	Seasonality	Adjusted R^2	Implied Trend Rate
Loss Cost	2004.1	-0.026 ($\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000$)	0.173 ($\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.003$)	0.487	-2.59\%
Loss Cost	2004.2	$-0.028(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.165(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.005$)	0.500	-2.72\%
Loss Cost	2005.1	-0.029 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	0.176 ($\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.003$)	0.516	-2.90\%
Loss Cost	2005.2	$-0.032(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.163(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.006)$	0.544	-3.11\%
Loss Cost	2006.1	$-0.035(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.183(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.002)$	0.601	-3.44\%
Loss Cost	2006.2	-0.038 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000$)	$0.164(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.003)$	0.655	-3.77\%
Loss Cost	2007.1	$-0.040(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.171(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.003)$	0.647	-3.90\%
Loss Cost	2007.2	$-0.042(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.162(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.005)$	0.658	-4.07\%
Loss Cost	2008.1	$-0.044(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.174(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.003)$	0.665	-4.29\%
Loss Cost	2008.2	$-0.044(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.173(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.004)$	0.655	-4.31\%
Loss Cost	2009.1	$-0.044(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000)$	$0.171(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.006)$	0.615	-4.27\%
Loss Cost	2009.2	$-0.043(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.175(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.007$)	0.598	-4.17\%
Loss Cost	2010.1	$-0.040(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.163(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.012)$	0.532	-3.90\%
Loss Cost	2010.2	$-0.035(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	$0.181(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.006)$	0.521	-3.49\%
Loss Cost	2011.1	$-0.031(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.001)$	$0.164(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.012)$	0.436	-3.10\%
Loss Cost	2011.2	-0.025 ($\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.007$)	$0.188(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.003)$	0.459	-2.48\%
Loss Cost	2012.1	-0.020 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.032$)	$0.168(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.006)$	0.363	-1.95\%
Loss Cost	2012.2	$-0.020(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.050$)	0.168 ($\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.008$)	0.359	-1.95\%
Loss Cost	2013.1	-0.022 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.044$)	$0.177(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.008)$	0.359	-2.20\%
Loss Cost	2013.2	$-0.021(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.080)$	$0.180(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.011)$	0.354	-2.10\%
Loss Cost	2014.1	$-0.019(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.149)$	$0.174(\mathrm{Cl}=+/-0.141 ; \mathrm{p}=0.019)$	0.279	-1.91\%
Loss Cost	2014.2	$-0.016(\mathrm{Cl}=+/-0.030 ; p=0.264)$	$0.182(\mathrm{Cl}=+/-0.149 ; \mathrm{p}=0.020)$	0.281	-1.63\%
Loss Cost	2015.1	-0.013 ($\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.423$)	0.173 ($\mathrm{Cl}=+/-0.159 ; \mathrm{p}=0.035$)	0.204	-1.32\%
Loss Cost	2015.2	$-0.011(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.556)$	$0.179(\mathrm{Cl}=+/-0.172 ; \mathrm{p}=0.043)$	0.201	-1.10\%
Loss Cost	2016.1	-0.016 (CI $=+/-0.046 ; p=0.456)$	$0.192(\mathrm{Cl}=+/-0.186 ; \mathrm{p}=0.044)$	0.207	-1.61\%
Loss Cost	2016.2	$-0.009(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.705$)	$0.207(\mathrm{Cl}=+/-0.200 ; \mathrm{p}=0.044$)	0.225	-0.93\%
Severity	2004.1	$0.027(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.085(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.148)$	0.420	+2.70\%
Severity	2004.2	0.026 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.078 ($\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.190$)	0.374	+2.59\%
Severity	2005.1	$0.023(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.091(\mathrm{Cl}=+/-0.120 ; p=0.130)$	0.342	+2.37\%
Severity	2005.2	$0.020(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.001)$	$0.074(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.209)$	0.270	+2.06\%
Severity	2006.1	$0.016(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.006)$	$0.100(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.068)$	0.249	+1.61\%
Severity	2006.2	$0.011(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.028)$	$0.072(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.122)$	0.154	+1.11\%
Severity	2007.1	$0.009(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.080)$	$0.084(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.077)$	0.140	+0.90\%
Severity	2007.2	$0.006(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.259)$	$0.066(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.136)$	0.053	+0.55\%
Severity	2008.1	$0.001(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.768)$	$0.087(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.030)$	0.105	+0.13\%
Severity	2008.2	$-0.001(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.897)$	$0.078(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.051)$	0.073	-0.06\%
Severity	2009.1	$0.000(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.933)$	$0.077(\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.063)$	0.062	-0.04\%
Severity	2009.2	$0.000(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.928)$	$0.077(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.074)$	0.054	-0.05\%
Severity	2010.1	$0.000(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.992)$	0.075 ($\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.096$)	0.040	+0.01\%
Severity	2010.2	$0.003(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.674)$	0.085 ($\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.062$)	0.079	+0.26\%
Severity	2011.1	$0.003(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.647)$	$0.083(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.080)$	0.070	+0.30\%
Severity	2011.2	$0.006(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.380)$	0.095 ($\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.049)$	0.127	+0.61\%
Severity	2012.1	$0.009(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.215$)	$0.083(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.087)$	0.136	+0.93\%
Severity	2012.2	$0.006(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.464)$	0.070 ($\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.143$)	0.043	+0.57\%
Severity	2013.1	$-0.001(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.903$)	$0.093(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.040)$	0.134	-0.09\%
Severity	2013.2	$-0.003(\mathrm{Cl}=+/-0.017 ; p=0.745)$	$0.088(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.063)$	0.105	-0.26\%
Severity	2014.1	$-0.003(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.769$)	$0.088(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.079)$	0.084	-0.27\%
Severity	2014.2	$-0.004(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.720$)	0.085 ($\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.107$)	0.064	-0.37\%
Severity	2015.1	$-0.003(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.815$)	$0.082(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.144)$	0.027	-0.27\%
Severity	2015.2	$-0.008(\mathrm{Cl}=+/-0.027 ; p=0.554)$	$0.070(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.225)$	0.001	-0.77\%
Severity	2016.1	$-0.010(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.512)$	$0.076(\mathrm{Cl}=+/-0.130 ; \mathrm{p}=0.227)$	-0.007	-0.99\%
Severity	2016.2	$-0.011(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.524)$	$0.073(\mathrm{Cl}=+/-0.142 ; \mathrm{p}=0.282)$	-0.023	-1.12\%
Frequency	2004.1	$-0.053(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.088(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.038)$	0.844	-5.14\%
Frequency	2004.2	$-0.053(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000$)	$0.086(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.047)$	0.837	-5.17\%
Frequency	2005.1	$-0.053(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.085(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.058)$	0.822	-5.15\%
Frequency	2005.2	$-0.052(\mathrm{Cl}=+/-0.009 ; p=0.000)$	$0.090(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.051)$	0.809	-5.07\%
Frequency	2006.1	-0.051 ($\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000$)	$0.083(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.074)$	0.788	-4.96\%
Frequency	2006.2	$-0.049(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.092(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.054)$	0.772	-4.82\%
Frequency	2007.1	$-0.049(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.088(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.072)$	0.747	-4.75\%
Frequency	2007.2	$-0.047(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.096(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.053)$	0.728	-4.60\%
Frequency	2008.1	$-0.045(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.086(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.085)$	0.693	-4.42\%
Frequency	2008.2	$-0.043(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	0.095 ($\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.065$)	0.669	-4.25\%
Frequency	2009.1	$-0.043(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.093(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.079)$	0.633	-4.23\%
Frequency	2009.2	-0.042 ($\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000$)	$0.098(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.074)$	0.607	-4.12\%
Frequency	2010.1	$-0.040(\mathrm{Cl}=+/-0.015 ; \mathrm{p}=0.000$)	$0.088(\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.116)$	0.548	-3.91\%
Frequency	2010.2	$-0.038(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.096(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.099)$	0.514	-3.73\%
Frequency	2011.1	$-0.034(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000$)	$0.081(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.164)$	0.432	-3.39\%
Frequency	2011.2	$-0.031(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.002)$	$0.093(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.115)$	0.390	-3.07\%
Frequency	2012.1	$-0.029(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.006$)	$0.085(\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.166)$	0.304	-2.85\%
Frequency	2012.2	$-0.025(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.020)$	$0.098(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.122)$	0.264	-2.50\%
Frequency	2013.1	$-0.021(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.063)$	$0.084(\mathrm{Cl}=+/-0.130 ; p=0.193)$	0.151	-2.11\%
Frequency	2013.2	$-0.019(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.133)$	$0.093(\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.170)$	0.125	-1.84\%
Frequency	2014.1	$-0.017(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.225)$	$0.086(\mathrm{Cl}=+/-0.145 ; \mathrm{p}=0.225)$	0.051	-1.65\%
Frequency	2014.2	$-0.013(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.394)$	$0.097(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.193)$	0.038	-1.27\%
Frequency	2015.1	$-0.010(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.537)$	$0.091(\mathrm{Cl}=+/-0.165 ; \mathrm{p}=0.254)$	-0.022	-1.04\%
Frequency	2015.2	$-0.003(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.857)$	$0.109(\mathrm{Cl}=+/-0.171 ; \mathrm{p}=0.192)$	-0.004	-0.33\%
Frequency	2016.1	$-0.006(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.773$)	$0.116(\mathrm{Cl}=+/-0.187 ; \mathrm{p}=0.200)$	-0.010	-0.62\%
Frequency	2016.2	$0.002(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.937)$	$0.134(\mathrm{Cl}=+/-0.199 ; \mathrm{p}=0.165)$	0.020	+0.19\%

Fit	Start Date	Time	Seasonality	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2004.2	$-0.016(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.124)$	0.133 ($\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.025$)	-0.043 ($\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.162$)	0.437	-1.59\%	-5.69\%
Loss Cost	2005.1	$-0.019(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.084)$	0.143 ($\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.020$)	$-0.037(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.240)$	0.448	-1.93\%	-5.45\%
Loss Cost	2005.2	$-0.026(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.034)$	$0.127(\mathrm{Cl}=+/-0.118 ; \mathrm{p}=0.035)$	$-0.026(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.406)$	0.485	-2.53\%	-5.02\%
Loss Cost	2006.1	$-0.035(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.006)$	$0.148(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.012)$	-0.011 ($\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.711$)	0.563	-3.41\%	-4.48\%
Loss Cost	2006.2	$-0.047(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.121(\mathrm{Cl}=+/-0.100 ; p=0.020)$	$0.009(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.731)$	0.674	-4.60\%	-3.71\%
Loss Cost	2007.1	$-0.053(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$0.132(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.013)$	0.018 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.528$)	0.677	-5.12\%	-3.43\%
Loss Cost	2007.2	$-0.063(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$0.113(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.025)$	$0.034(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.219)$	0.732	-6.10\%	-2.87\%
Loss Cost	2008.1	$-0.075(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	$0.133(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.005)$	$0.052(\mathrm{Cl}=+/-0.052 ; \mathrm{p}=0.053)$	0.786	-7.24\%	-2.33\%
Loss Cost	2008.2	$-0.084(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	0.119 ($\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.010$)	0.065 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.019$)	0.807	-8.09\%	-1.91\%
Loss Cost	2009.1	$-0.090(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.000)$	$0.127(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.008)$	0.073 ($\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.015$)	0.788	-8.63\%	-1.70\%
Loss Cost	2009.2	$-0.099(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	$0.115(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.017)$	$0.086(\mathrm{Cl}=+/-0.060 ; p=0.008)$	0.794	-9.47\%	-1.36\%
Loss Cost	2010.1	$-0.098(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.000)$	$0.113(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.025)$	$0.084(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.018)$	0.731	-9.31\%	-1.41\%
Loss Cost	2010.2	$-0.092(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.001)$	$0.119(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.026)$	$0.077(\mathrm{Cl}=+/-0.076 ; p=0.048)$	0.682	-8.81\%	-1.56\%
Loss Cost	2011.1	$-0.080(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.010)$	$0.109(\mathrm{Cl}=+/-0.107 ; p=0.047)$	$0.062(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.143)$	0.552	-7.70\%	-1.81\%
Loss Cost	2011.2	$-0.049(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.125)$	$0.130(\mathrm{Cl}=+/-0.103 ; p=0.018)$	0.025 ($\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.564)$	0.505	-4.81\%	-2.41\%
Loss Cost	2012.1	$0.004(\mathrm{Cl}=+/-0.065 ; ~ p=0.906)$	$0.101(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.023$)	$-0.035(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.383)$	0.408	+0.36\%	-3.12\%
Loss Cost	2012.2	$-0.001(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.980)$	$0.099(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.038)$	$-0.030(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.560)$	0.399	-0.10\%	-3.06\%
Loss Cost	2013.1	$-0.032(\mathrm{Cl}=+/-0.129 ; \mathrm{p}=0.587)$	$0.109(\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.035)$	$0.004(\mathrm{Cl}=+/-0.150 ; \mathrm{p}=0.958)$	0.403	-3.20\%	-2.85\%
Loss Cost	2013.2	$-0.085(\mathrm{Cl}=+/-0.213 ; \mathrm{p}=0.391)$	$0.100(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.064$)	$0.058(\mathrm{Cl}=+/-0.233 ; \mathrm{p}=0.584)$	0.420	-8.13\%	-2.60\%
Loss Cost	2014.1	$-0.020(\mathrm{Cl}=+/-0.488 ; \mathrm{p}=0.926)$	$0.093(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.122)$	$-0.007(\mathrm{Cl}=+/-0.505 ; \mathrm{p}=0.975)$	0.199	-2.02\%	-2.71\%
Loss Cost	2014.2	$-0.027(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.143)$	$0.093(\mathrm{Cl}=+/-0.124 ; \mathrm{p}=0.122)$	$N A(C l=+/-N A ; p=N A)$	0.267	-2.71\%	-2.71\%
Loss Cost	2015.1	$-0.018(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.403)$	0.075 ($\mathrm{Cl}=+/-0.136 ; p=0.232)$	$N A(C l=+/-N A ; p=N A)$	0.018	-1.77\%	-1.77\%
Loss Cost	2015.2	$-0.023(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.382)$	$0.067(\mathrm{Cl}=+/-0.156 ; \mathrm{p}=0.334)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	-0.001	-2.29\%	-2.29\%
Loss Cost	2016.1	$-0.038(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.265)$	$0.090(\mathrm{Cl}=+/-0.181 ; \mathrm{p}=0.257)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.083	-3.78\%	-3.78\%
Loss Cost	2016.2	$-0.042(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.361)$	$0.086(\mathrm{Cl}=+/-0.230 ; \mathrm{p}=0.358)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.023	-4.13\%	-4.13\%
Severity	2004.2	$0.057(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.074(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.201)$	$-0.083(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.010)$	0.548	+5.86\%	-2.53\%
Severity	2005.1	$0.055(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.080(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.186)$	$-0.079(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.017)$	0.504	+5.65\%	-2.40\%
Severity	2005.2	$0.050(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.067(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.271)$	$-0.070(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.036)$	0.413	+5.11\%	-2.02\%
Severity	2006.1	0.040 ($\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.002)$	$0.088(\mathrm{Cl}=+/-0.117 ; \mathrm{p}=0.131)$	$-0.055(\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.086)$	0.344	+4.13\%	-1.45\%
Severity	2006.2	$0.027(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.023)$	$0.060(\mathrm{Cl}=+/-0.103 ; \mathrm{p}=0.244)$	$-0.034(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.236)$	0.191	+2.78\%	-0.61\%
Severity	2007.1	$0.024(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.071$)	$0.068(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.200)$	$-0.028(\mathrm{Cl}=+/-0.060 ; p=0.350)$	0.138	+2.38\%	-0.40\%
Severity	2007.2	$0.013(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.325)$	$0.048(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.341)$	$-0.011(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.705)$	-0.013	+1.28\%	+0.20\%
Severity	2008.1	$-0.002(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.902)$	$0.072(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.112)$	0.010 ($\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.700$)	0.008	-0.15\%	+0.85\%
Severity	2008.2	$-0.011(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.414)$	$0.057(\mathrm{Cl}=+/-0.089 ; \mathrm{p}=0.192)$	0.023 ($\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.374)$	-0.007	-1.07\%	+1.28\%
Severity	2009.1	$-0.011(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.462)$	$0.058(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.211)$	$0.024(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.403)$	-0.028	-1.11\%	+1.29\%
Severity	2009.2	$-0.015(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.408)$	$0.053(\mathrm{Cl}=+/-0.099 ; p=0.268)$	$0.029(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.363)$	-0.033	-1.45\%	+1.42\%
Severity	2010.1	$-0.014(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.510)$	$0.052(\mathrm{Cl}=+/-0.105 ; \mathrm{p}=0.303)$	$0.027(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.432)$	-0.067	-1.35\%	+1.39\%
Severity	2010.2	$-0.002(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.946)$	$0.064(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.226)$	$0.012(\mathrm{Cl}=+/-0.080 ; p=0.751)$	-0.051	-0.16\%	+1.05\%
Severity	2011.1	$0.003(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.908)$	$0.060(\mathrm{Cl}=+/-0.115 ; \mathrm{p}=0.283)$	$0.006(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.890$)	-0.069	+0.34\%	+0.94\%
Severity	2011.2	$0.033(\mathrm{Cl}=+/-0.071 ; \mathrm{p}=0.341)$	$0.080(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.154)$	$-0.029(\mathrm{Cl}=+/-0.100 ; p=0.542)$	0.061	+3.32\%	+0.36\%
Severity	2012.1	$0.089(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.021)$	0.049 ($\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.286$)	$-0.093(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.056)$	0.363	+9.29\%	-0.41\%
Severity	2012.2	$0.084(\mathrm{Cl}=+/-0.101 ; \mathrm{p}=0.094)$	$0.047(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.341)$	$-0.087(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.151)$	0.127	+8.75\%	-0.35\%
Severity	2013.1	$0.024(\mathrm{Cl}=+/-0.138 ; \mathrm{p}=0.701$)	$0.065(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.201)$	$-0.024(\mathrm{Cl}=+/-0.160 ; p=0.747)$	-0.049	+2.48\%	+0.07\%
Severity	2013.2	$-0.017(\mathrm{Cl}=+/-0.230 ; p=0.875)$	$0.058(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.285)$	$0.019(\mathrm{Cl}=+/-0.252 ; \mathrm{p}=0.867)$	-0.154	-1.64\%	+0.27\%
Severity	2014.1	$0.060(\mathrm{Cl}=+/-0.528 ; \mathrm{p}=0.799)$	$0.050(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.416)$	$-0.059(\mathrm{Cl}=+/-0.546 ; \mathrm{p}=0.810)$	-0.207	+6.20\%	+0.14\%
Severity	2014.2	$0.001(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.943)$	$0.050(\mathrm{Cl}=+/-0.134 ; \mathrm{p}=0.416)$	$N A(C l=+/-N A ; p=N A)$	-0.144	+0.14\%	+0.14\%
Severity	2015.1	$0.009(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.701)$	$0.036(\mathrm{Cl}=+/-0.151 ; \mathrm{p}=0.591)$	$N A(C l=+/-N A ; p=N A)$	-0.188	+0.89\%	+0.89\%
Severity	2015.2	$-0.004(\mathrm{Cl}=+/-0.062 ; \mathrm{p}=0.870)$	$0.016(\mathrm{Cl}=+/-0.162 ; \mathrm{p}=0.816)$	$N A(C l=+/-N A ; p=N A)$	-0.314	-0.43\%	-0.43\%
Severity	2016.1	$-0.003(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.941)$	$0.014(\mathrm{Cl}=+/-0.202 ; \mathrm{p}=0.869)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	-0.391	-0.27\%	-0.27\%
Severity	2016.2	$-0.010(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.841)$	$0.005(\mathrm{Cl}=+/-0.254 ; \mathrm{p}=0.956)$	$N A(C l=+/-N A ; p=N A)$	-0.482	-0.97\%	-0.97\%
Frequency	2004.2	$-0.073(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	0.059 ($\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.001$)	$0.040(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.978	-7.03\%	-3.24\%
Frequency	2005.1	$-0.074(\mathrm{Cl}=+/-0.006 ; p=0.000)$	$0.063(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.000)$	$0.043(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.978	-7.18\%	-3.13\%
Frequency	2005.2	$-0.075(\mathrm{Cl}=+/-0.006 ; \mathrm{p}=0.000)$	$0.061(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.001)$	$0.044(\mathrm{Cl}=+/-0.017 ; \mathrm{p}=0.000)$	0.976	-7.26\%	-3.06\%
Frequency	2006.1	$-0.075(\mathrm{Cl}=+/-0.007 ; \mathrm{p}=0.000)$	$0.060(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.001)$	$0.044(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.973	-7.24\%	-3.08\%
Frequency	2006.2	$-0.075(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.061(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.001)$	0.043 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000$)	0.969	-7.19\%	-3.12\%
Frequency	2007.1	$-0.076(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.064(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.001)$	0.045 ($\mathrm{Cl}=+/-0.020 ; p=0.000$)	0.966	-7.32\%	-3.04\%
Frequency	2007.2	$-0.076(\mathrm{Cl}=+/-0.010 ; p=0.000)$	$0.065(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.002)$	0.045 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000$)	0.961	-7.29\%	-3.06\%
Frequency	2008.1	$-0.074(\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	$0.062(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.003)$	$0.042(\mathrm{Cl}=+/-0.023 ; p=0.001)$	0.954	-7.10\%	-3.15\%
Frequency	2008.2	$-0.074(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.062(\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.005)$	$0.042(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.002)$	0.947	-7.10\%	-3.15\%
Frequency	2009.1	$-0.079(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.069(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.001)$	0.049 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000$)	0.950	-7.60\%	-2.95\%
Frequency	2009.2	$-0.085(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.062(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.003)$	0.057 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	0.955	-8.14\%	-2.74\%
Frequency	2010.1	$-0.084(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.061(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.004)$	0.056 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000$)	0.941	-8.07\%	-2.76\%
Frequency	2010.2	$-0.091(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.055 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.009$)	$0.064(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.942	-8.67\%	-2.59\%
Frequency	2011.1	$-0.084(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000)$	$0.049(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.017)$	$0.056(\mathrm{Cl}=+/-0.031 ; \mathrm{p}=0.002)$	0.924	-8.02\%	-2.73\%
Frequency	2011.2	$-0.082(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	$0.050(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.023)$	$0.054(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.008)$	0.903	-7.88\%	-2.76\%
Frequency	2012.1	$-0.085(\mathrm{Cl}=+/-0.034 ; \mathrm{p}=0.000)$	$0.052(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.028)$	$0.058(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.017)$	0.868	-8.17\%	-2.72\%
Frequency	2012.2	$-0.085(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.002)$	$0.052(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.041)$	$0.057(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.055)$	0.830	-8.14\%	-2.72\%
Frequency	2013.1	$-0.057(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.081)$	$0.044(\mathrm{Cl}=+/-0.050 ; \mathrm{p}=0.081)$	$0.027(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.438)$	0.734	-5.54\%	-2.91\%
Frequency	2013.2	$-0.068(\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.195)$	$0.042(\mathrm{Cl}=+/-0.055 ; \mathrm{p}=0.122)$	$0.039(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.480)$	0.689	-6.59\%	-2.86\%
Frequency	2014.1	$-0.081(\mathrm{Cl}=+/-0.254 ; \mathrm{p}=0.485)$	$0.043(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.162)$	$0.052(\mathrm{Cl}=+/-0.263 ; \mathrm{p}=0.662)$	0.551	-7.74\%	-2.84\%
Frequency	2014.2	$-0.029(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.011)$	$0.043(\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.162)$	$N A(C l=+/-N A ; p=N A)$	0.526	-2.84\%	-2.84\%
Frequency	2015.1	$-0.027(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.044)$	$0.039(\mathrm{Cl}=+/-0.074 ; \mathrm{p}=0.252)$	$N A(C l e+/-N A ; p=N A)$	0.342	-2.63\%	-2.63\%
Frequency	2015.2	$-0.019(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.168)$	$0.051(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.153)$	$N A(C l=+/-N A ; p=N A)$	0.282	-1.86\%	-1.86\%
Frequency	2016.1	$-0.036(\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.011)$	$0.077(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.015$)	$N A(C l=+/-N A ; p=N A)$	0.753	-3.52\%	-3.52\%
Frequency	2016.2	$-0.032(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.053)$	$0.081(\mathrm{Cl}=+/-0.067 ; \mathrm{p}=0.029)$	$N A(C l=+/-N A ; p=N A)$	0.735	-3.19\%	-3.19\%

Coverage $=U A$
End Trend Period $=2022.2$
Excluded Points $=2020.1,2020.2,2021.1$
Parameters Included: time, trend_level_change, seasonality
Future Trend Start Date $=$ 2015-01-01

Fit	Start Date	Time	Seasonality	Trend Shift	Adjusted R^2	Implied Past Trend Rate	Implied Future Trend Rate
Loss Cost	2004.2	-0.022 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.028$)	0.129 ($\mathrm{Cl}=+/-0.112 ; \mathrm{p}=0.025$)	$-0.001(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.964)$	0.377	-2.21\%	-2.31\%
Loss Cost	2005.1	$-0.026(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.018)$	$0.139(\mathrm{Cl}=+/-0.114 ; \mathrm{p}=0.019)$	$0.004(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.848)$	0.391	-2.57\%	-2.17\%
Loss Cost	2005.2	-0.032 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.006$)	$0.123(\mathrm{Cl}=+/-0.113 ; \mathrm{p}=0.034)$	$0.013(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.542)$	0.436	-3.19\%	-1.87\%
Loss Cost	2006.1	$-0.041(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.001)$	0.143 ($\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.011$)	0.026 ($\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.237)$	0.522	-4.06\%	-1.57\%
Loss Cost	2006.2	-0.054 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.000$)	$0.117(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.018)$	0.043 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.035$)	0.642	-5.23\%	-1.08\%
Loss Cost	2007.1	$-0.059(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.128(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.011)$	0.050 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.019$)	0.647	-5.76\%	-0.92\%
Loss Cost	2007.2	$-0.070(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.109(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.021)$	0.064 ($\mathrm{Cl}=+/-0.040 ; \mathrm{p}=0.003$)	0.708	-6.74\%	-0.56\%
Loss Cost	2008.1	$-0.082(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	$0.128(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.004$)	0.079 ($\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.000$)	0.765	-7.85\%	-0.28\%
Loss Cost	2008.2	-0.091 ($\mathrm{Cl}=+/-0.024 ; \mathrm{p}=0.000)$	$0.114(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.008)$	0.091 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.000$)	0.791	-8.72\%	-0.01\%
Loss Cost	2009.1	-0.097 ($\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000$)	$0.122(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.006)$	0.098 ($\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.000$)	0.771	-9.27\%	+0.10\%
Loss Cost	2009.2	$-0.107(\mathrm{Cl}=+/-0.030 ; p=0.000)$	0.110 ($\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.012$)	0.110 ($\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.000$)	0.779	-10.15\%	+0.32\%
Loss Cost	2010.1	$-0.106(\mathrm{Cl}=+/-0.035 ; \mathrm{p}=0.000)$	$0.109(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.017$)	$0.109(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.000)$	0.711	-10.09\%	+0.31\%
Loss Cost	2010.2	$-0.103(\mathrm{Cl}=+/-0.042 ; \mathrm{p}=0.000)$	$0.112(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.019)$	$0.106(\mathrm{Cl}=+/-0.057 ; \mathrm{p}=0.001$)	0.655	-9.78\%	+0.26\%
Loss Cost	2011.1	$-0.093(\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.001)$	$0.105(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.033)$	0.095 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.007$)	0.507	-8.91\%	+0.16\%
Loss Cost	2011.2	$-0.068(\mathrm{Cl}=+/-0.059 ; \mathrm{p}=0.027)$	$0.121(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.015$)	$0.067(\mathrm{Cl}=+/-0.073 ; \mathrm{p}=0.070)$	0.418	-6.58\%	-0.13\%
Loss Cost	2012.1	$-0.023(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.464)$	$0.099(\mathrm{Cl}=+/-0.085 ; \mathrm{p}=0.025$)	0.019 ($\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.610$)	0.180	-2.26\%	-0.43\%
Loss Cost	2012.2	$-0.035(\mathrm{Cl}=+/-0.088 ; \mathrm{p}=0.407)$	$0.094(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.042)$	$0.032(\mathrm{Cl}=+/-0.100 ; \mathrm{p}=0.505)$	0.181	-3.46\%	-0.35\%
Loss Cost	2013.1	$-0.075(\mathrm{Cl}=+/-0.125 ; \mathrm{p}=0.218)$	$0.105(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.032)$	0.073 ($\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.266$)	0.209	-7.24\%	-0.22\%
Loss Cost	2013.2	$-0.147(\mathrm{Cl}=+/-0.203 ; \mathrm{p}=0.140)$	$0.094(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.058)$	0.146 ($\mathrm{Cl}=+/-0.212 ; \mathrm{p}=0.159)$	0.257	-13.65\%	-0.03\%
Loss Cost	2014.1	$-0.128(\mathrm{Cl}=+/-0.460 ; \mathrm{p}=0.553)$	0.092 ($\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.091$)	$0.127(\mathrm{Cl}=+/-0.467 ; \mathrm{p}=0.560)$	0.032	-12.01\%	-0.05\%
Loss Cost	2014.2	$0.000(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.962)$	$0.092(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.091)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.100	-0.05\%	-0.05\%
Loss Cost	2015.1	$0.007(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.522)$	$0.068(\mathrm{Cl}=+/-0.108 ; \mathrm{p}=0.189)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.072	+0.68\%	+0.68\%
Loss Cost	2015.2	$0.007(\mathrm{Cl}=+/-0.026 ; p=0.544)$	$0.070(\mathrm{Cl}=+/-0.120 ; p=0.217)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.028	+0.73\%	+0.73\%
Loss Cost	2016.1	$0.006(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.661$)	$0.073(\mathrm{Cl}=+/-0.136 ; \mathrm{p}=0.250)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.009	+0.63\%	+0.63\%
Loss Cost	2016.2	$0.009(\mathrm{Cl}=+/-0.037 ; \mathrm{p}=0.563)$	$0.083(\mathrm{Cl}=+/-0.153 ; \mathrm{p}=0.239)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.018	+0.95\%	+0.95\%
Severity	2004.2	$0.056(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.075 ($\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.162$)	$-0.076(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.001)$	0.553	+5.77\%	-2.00\%
Severity	2005.1	$0.054(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000$)	0.080 ($\mathrm{Cl}=+/-0.110 ; \mathrm{p}=0.148$)	$-0.074(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.001)$	0.509	+5.57\%	-1.92\%
Severity	2005.2	0.049 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	$0.068(\mathrm{Cl}=+/-0.111 ; \mathrm{p}=0.220)$	$-0.066(\mathrm{Cl}=+/-0.044 ; \mathrm{p}=0.004)$	0.420	+5.05\%	-1.70\%
Severity	2006.1	0.041 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.001$)	$0.088(\mathrm{Cl}=+/-0.106 ; \mathrm{p}=0.101)$	$-0.055(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.014)$	0.352	+4.14\%	-1.41\%
Severity	2006.2	0.028 ($\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.010$)	$0.062(\mathrm{Cl}=+/-0.094 ; \mathrm{p}=0.190)$	$-0.038(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.058)$	0.200	+2.88\%	-0.92\%
Severity	2007.1	0.025 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.035$)	$0.069(\mathrm{Cl}=+/-0.096 ; \mathrm{p}=0.156)$	$-0.033(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.110)$	0.149	+2.51\%	-0.82\%
Severity	2007.2	0.015 ($\mathrm{Cl}=+/-0.024 ; p=0.203)$	$0.051(\mathrm{Cl}=+/-0.092 ; \mathrm{p}=0.270)$	$-0.020(\mathrm{Cl}=+/-0.041 ; \mathrm{p}=0.325)$	0.001	+1.51\%	-0.48\%
Severity	2008.1	$0.002(\mathrm{Cl}=+/-0.023 ; p=0.859)$	$0.072(\mathrm{Cl}=+/-0.083 ; \mathrm{p}=0.087)$	$-0.004(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.841)$	0.010	+0.20\%	-0.17\%
Severity	2008.2	$-0.006(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.610)$	0.059 ($\mathrm{Cl}=+/-0.082 ; \mathrm{p}=0.149)$	$0.007(\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.724)$	-0.015	-0.61\%	+0.06\%
Severity	2009.1	$-0.006(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.666$)	$0.059(\mathrm{Cl}=+/-0.086 ; \mathrm{p}=0.168)$	$0.007(\mathrm{Cl}=+/-0.043 ; \mathrm{p}=0.755)$	-0.035	-0.60\%	+0.06\%
Severity	2009.2	$-0.008(\mathrm{Cl}=+/-0.033 ; \mathrm{p}=0.600)$	0.056 ($\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.209$)	$0.009(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.684)$	-0.041	-0.84\%	+0.11\%
Severity	2010.1	-0.007 ($\mathrm{Cl}=+/-0.039 ; \mathrm{p}=0.719$)	$0.054(\mathrm{Cl}=+/-0.095 ; \mathrm{p}=0.244)$	$0.008(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.771$)	-0.071	-0.67\%	+0.08\%
Severity	2010.2	$0.006(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.795$)	$0.066(\mathrm{Cl}=+/-0.097 ; \mathrm{p}=0.170)$	$-0.007(\mathrm{Cl}=+/-0.060 ; \mathrm{p}=0.813)$	-0.045	+0.56\%	-0.12\%
Severity	2011.1	$0.011(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.662)$	$0.061(\mathrm{Cl}=+/-0.102 ; \mathrm{p}=0.220)$	$-0.013(\mathrm{Cl}=+/-0.069 ; \mathrm{p}=0.691)$	-0.056	+1.15\%	-0.18\%
Severity	2011.2	0.040 ($\mathrm{Cl}=+/-0.063 ; \mathrm{p}=0.191$)	0.079 ($\mathrm{Cl}=+/-0.099 ; \mathrm{p}=0.109$)	$-0.045(\mathrm{Cl}=+/-0.077 ; \mathrm{p}=0.227)$	0.076	+4.11\%	-0.51\%
Severity	2012.1	$0.094(\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.007$)	$0.053(\mathrm{Cl}=+/-0.084 ; \mathrm{p}=0.200)$	$-0.102(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.011)$	0.352	+9.83\%	-0.86\%
Severity	2012.2	$0.091(\mathrm{Cl}=+/-0.089 ; p=0.044)$	$0.052(\mathrm{Cl}=+/-0.090 ; \mathrm{p}=0.236)$	$-0.100(\mathrm{Cl}=+/-0.100 ; p=0.050)$	0.151	+9.55\%	-0.84\%
Severity	2013.1	$0.038(\mathrm{Cl}=+/-0.122 ; \mathrm{p}=0.518)$	$0.066(\mathrm{Cl}=+/-0.091 ; \mathrm{p}=0.140)$	$-0.044(\mathrm{Cl}=+/-0.132 ; \mathrm{p}=0.481)$	0.014	+3.83\%	-0.67\%
Severity	2013.2	$0.006(\mathrm{Cl}=+/-0.203 ; p=0.948)$	$0.062(\mathrm{Cl}=+/-0.098 ; \mathrm{p}=0.196)$	$-0.012(\mathrm{Cl}=+/-0.213 ; \mathrm{p}=0.904)$	-0.057	+0.62\%	-0.59\%
Severity	2014.1	$0.090(\mathrm{Cl}=+/-0.458 ; \mathrm{p}=0.673$)	$0.054(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.298)$	$-0.097(\mathrm{Cl}=+/-0.465 ; \mathrm{p}=0.656)$	-0.091	+9.43\%	-0.65\%
Severity	2014.2	$-0.006(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.523)$	$0.054(\mathrm{Cl}=+/-0.109 ; \mathrm{p}=0.298)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.038	-0.65\%	-0.65\%
Severity	2015.1	$-0.005(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.693)$	$0.048(\mathrm{Cl}=+/-0.120 ; \mathrm{p}=0.396)$	$N A(C l=+/-N A ; p=N A)$	-0.107	-0.46\%	-0.46\%
Severity	2015.2	$-0.010(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.410)$	0.030 ($\mathrm{Cl}=+/-0.123 ; \mathrm{p}=0.593$)	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	-0.102	-1.02\%	-1.02\%
Severity	2016.1	-0.011 ($\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.453)$	$0.033(\mathrm{Cl}=+/-0.140 ; \mathrm{p}=0.604)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	-0.141	-1.11\%	-1.11\%
Severity	2016.2	$-0.013(\mathrm{Cl}=+/-0.038 ; \mathrm{p}=0.437)$	$0.026(\mathrm{Cl}=+/-0.158 ; \mathrm{p}=0.712)$	$N A(C l e+/-N A ; p=N A)$	-0.156	-1.33\%	-1.33\%
Frequency	2004.2	$-0.078(\mathrm{Cl}=+/-0.008 ; \mathrm{p}=0.000)$	$0.054(\mathrm{Cl}=+/-0.047 ; \mathrm{p}=0.027$)	0.075 ($\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	0.944	-7.54\%	-0.32\%
Frequency	2005.1	$-0.080(\mathrm{Cl}=+/-0.009 ; \mathrm{p}=0.000)$	$0.059(\mathrm{Cl}=+/-0.048 ; \mathrm{p}=0.018)$	0.078 ($\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.941	-7.71\%	-0.25\%
Frequency	2005.2	$-0.082(\mathrm{Cl}=+/-0.010 ; \mathrm{p}=0.000)$	$0.055(\mathrm{Cl}=+/-0.049 ; \mathrm{p}=0.029)$	$0.080(\mathrm{Cl}=+/-0.019 ; \mathrm{p}=0.000)$	0.936	-7.84\%	-0.18\%
Frequency	2006.1	-0.082 ($\mathrm{Cl}=+/-0.011 ; \mathrm{p}=0.000)$	0.056 ($\mathrm{Cl}=+/-0.051 ; \mathrm{p}=0.032)$	0.080 ($\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	0.926	-7.87\%	-0.17\%
Frequency	2006.2	$-0.082(\mathrm{Cl}=+/-0.012 ; \mathrm{p}=0.000)$	$0.055(\mathrm{Cl}=+/-0.053 ; \mathrm{p}=0.040)$	$0.080(\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000)$	0.915	-7.88\%	-0.16\%
Frequency	2007.1	$-0.084(\mathrm{Cl}=+/-0.013 ; \mathrm{p}=0.000)$	$0.059(\mathrm{Cl}=+/-0.054 ; \mathrm{p}=0.033)$	$0.083(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.000)$	0.905	-8.07\%	-0.11\%
Frequency	2007.2	$-0.085(\mathrm{Cl}=+/-0.014 ; \mathrm{p}=0.000)$	$0.058(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.043)$	$0.084(\mathrm{Cl}=+/-0.025 ; \mathrm{p}=0.000)$	0.892	-8.13\%	-0.08\%
Frequency	2008.1	$-0.084(\mathrm{Cl}=+/-0.016 ; \mathrm{p}=0.000)$	$0.056(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.058)$	$0.083(\mathrm{Cl}=+/-0.027 ; \mathrm{p}=0.000)$	0.867	-8.03\%	-0.11\%
Frequency	2008.2	$-0.085(\mathrm{Cl}=+/-0.018 ; \mathrm{p}=0.000)$	$0.054(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.078)$	$0.084(\mathrm{Cl}=+/-0.029 ; \mathrm{p}=0.000)$	0.847	-8.16\%	-0.07\%
Frequency	2009.1	$-0.091(\mathrm{Cl}=+/-0.020 ; \mathrm{p}=0.000)$	$0.063(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.044)$	0.092 ($\mathrm{Cl}=+/-0.030 ; p=0.000)$	0.842	-8.73\%	+0.05\%
Frequency	2009.2	-0.099 ($\mathrm{Cl}=+/-0.022 ; \mathrm{p}=0.000$)	$0.054(\mathrm{Cl}=+/-0.061 ; \mathrm{p}=0.079)$	$0.101(\mathrm{Cl}=+/-0.032 ; \mathrm{p}=0.000)$	0.843	-9.39\%	+0.21\%
Frequency	2010.1	$-0.100(\mathrm{Cl}=+/-0.026 ; \mathrm{p}=0.000)$	0.055 ($\mathrm{Cl}=+/-0.064 ; \mathrm{p}=0.088)$	$0.102(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	0.797	-9.48\%	+0.23\%
Frequency	2010.2	$-0.109(\mathrm{Cl}=+/-0.030 ; p=0.000)$	0.047 ($\mathrm{Cl}=+/-0.065 ; \mathrm{p}=0.147)$	0.112 ($\mathrm{Cl}=+/-0.040 ; p=0.000)$	0.788	-10.29\%	+0.38\%
Frequency	2011.1	$-0.105(\mathrm{Cl}=+/-0.036 ; \mathrm{p}=0.000)$	$0.044(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.192)$	$0.108(\mathrm{Cl}=+/-0.046 ; \mathrm{p}=0.000)$	0.696	-9.95\%	+0.34\%
Frequency	2011.2	$-0.108(\mathrm{Cl}=+/-0.045 ; \mathrm{p}=0.000)$	$0.041(\mathrm{Cl}=+/-0.072 ; \mathrm{p}=0.240)$	$0.112(\mathrm{Cl}=+/-0.056 ; \mathrm{p}=0.001)$	0.625	-10.27\%	+0.38\%
Frequency	2012.1	$-0.117(\mathrm{Cl}=+/-0.058 ; \mathrm{p}=0.001)$	$0.046(\mathrm{Cl}=+/-0.076 ; \mathrm{p}=0.221)$	$0.121(\mathrm{Cl}=+/-0.068 ; \mathrm{p}=0.002)$	0.516	-11.01\%	+0.43\%
Frequency	2012.2	$-0.126(\mathrm{Cl}=+/-0.079 ; \mathrm{p}=0.004)$	$0.042(\mathrm{Cl}=+/-0.081 ; \mathrm{p}=0.286)$	$0.131(\mathrm{Cl}=+/-0.090 ; p=0.007)$	0.417	-11.88\%	+0.50\%
Frequency	2013.1	$-0.113(\mathrm{Cl}=+/-0.116 ; \mathrm{p}=0.057)$	$0.038(\mathrm{Cl}=+/-0.087 ; \mathrm{p}=0.360)$	$0.117(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.066)$	0.113	-10.66\%	+0.45\%
Frequency	2013.2	$-0.153(\mathrm{Cl}=+/-0.193 ; \mathrm{p}=0.110)$	$0.032(\mathrm{Cl}=+/-0.093 ; \mathrm{p}=0.464)$	$0.158(\mathrm{Cl}=+/-0.202 ; \mathrm{p}=0.113)$	0.060	-14.18\%	+0.56\%
Frequency	2014.1	$-0.218(\mathrm{Cl}=+/-0.435 ; \mathrm{p}=0.294)$	$0.038(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.435)$	$0.224(\mathrm{Cl}=+/-0.442 ; \mathrm{p}=0.288)$	-0.102	-19.59\%	+0.60\%
Frequency	2014.2	$0.006(\mathrm{Cl}=+/-0.021 ; \mathrm{p}=0.533)$	$0.038(\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.435)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	-0.069	+0.60\%	+0.60\%
Frequency	2015.1	$0.011(\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.288)$	$0.021(\mathrm{Cl}=+/-0.107 ; \mathrm{p}=0.679)$	$N A(C l=+/-N A ; p=N A)$	-0.026	+1.14\%	+1.14\%
Frequency	2015.2	0.018 ($\mathrm{Cl}=+/-0.023 ; \mathrm{p}=0.116$)	0.040 ($\mathrm{Cl}=+/-0.104 ; \mathrm{p}=0.408)$	$\mathrm{NA}(\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA})$	0.158	+1.77\%	+1.77\%
Frequency	2016.1	$0.017(\mathrm{Cl}=+/-0.028 ; \mathrm{p}=0.186)$	$0.041(\mathrm{Cl}=+/-0.119 ; \mathrm{p}=0.455)$	NA ($\mathrm{Cl}=+/-\mathrm{NA} ; \mathrm{p}=\mathrm{NA}$)	0.119	+1.75\%	+1.75\%
Frequency	2016.2	$0.023(\mathrm{Cl}=+/-0.030 ; \mathrm{p}=0.119)$	$0.057(\mathrm{Cl}=+/-0.126 ; \mathrm{p}=0.317)$	$N A(C l e+/-N A ; p=N A)$	0.227	+2.31\%	+2.31\%

Appendix F. Selected Trend Models

Financial Services Regulatory Authority of Ontario
Private Passengers Vehicles (Excluding Farmers)
Selected Trend Model: Bodily Injury
Data as of 12/31/22

Financial Services Regulatory Authority of Ontario Private Passengers Vehicles (Excluding Farmers) Selected Trend Model: Direct Compensation Property Damage Data as of 12/31/22														
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
								$\exp (A+(1)$	* B + Sumproduct (5):88		$\operatorname{Exp}[\Delta(1) * B]$	$\operatorname{Exp}[\Delta 3) * c]$	$(12) *(13)-1$	per (10)
	Observed			Covariates				Predicted			Incremental Semi-Annual Change		Semi-Annual Trend Rate	Trend Factor to 10/01/22
Time	Frequency (000)	Severity	Loss Cost	2013 Trend Change	Seasonality	Mobility	New Normal	Frequency (000)	Severity	Loss Cost	Time	Trend Change		
2011.75	28.969	4,783	138.56	0.00	1	0.00	0	29.671	4,749	140.9	1.003	1.000	0.3\%	2.293
2012.25	27.300	4,595	125.45	0.00	0	0.00	0	29.671	4,601	136.5	1.003	1.000	0.3\%	2.287
2012.75	29.003	4,811	139.55	0.00	1	0.00	0	29.671	4,774	141.7	1.003	1.020	2.3\%	2.281
2013.25	28.752	4,790	137.71	0.25	0	0.00	0	29.842	4,691	140.0	1.003	1.040	4.3\%	2.230
2013.75	31.039	5,087	157.88	0.75	1	0.00	0	30.186	5,006	151.1	1.003	1.040	4.3\%	2.138
2014.25	32.149	5,005	160.89	1.25	0	0.00	0	30.535	4,988	152.3	1.003	1.040	4.3\%	2.050
2014.75	30.209	5,229	157.97	1.75	1	0.00	0	30.887	5,324	164.4	1.003	1.040	4.3\%	1.965
2015.25	32.765	5,346	175.17	2.25	0	0.00	0	31.244	5,305	165.7	1.003	1.040	4.3\%	1.884
2015.75	31.399	5,699	178.94	2.75	1	0.00	0	31.604	5,661	178.9	1.003	1.040	4.3\%	1.806
2016.25	31.435	5,707	179.41	3.25	0	0.00	0	31.969	5,641	180.3	1.003	1.040	4.3\%	1.731
2016.75	34.000	6,095	207.22	3.75	1	0.00	0	32.338	6,020	194.7	1.003	1.040	4.3\%	1.660
2017.25	31.897	6,094	194.37	4.25	0	0.00	0	32.711	5,999	196.2	1.003	1.040	4.3\%	1.591
2017.75	35.122	6,570	230.74	4.75	1	0.00	0	33.088	6,402	211.8	1.003	1.040	4.3\%	1.525
2018.25	33.484	6,648	222.62	5.25	0	0.00	0	33.470	6,379	213.5	1.003	1.040	4.3\%	1.462
2018.75	34.475	7,127	245.69	5.75	1	0.00	0	33.857	6,808	230.5	1.003	1.040	4.3\%	1.402
2019.25	34.296	7,122	244.25	6.25	0	0.00	0	34.247	6,784	232.3	1.003	1.040	4.3\%	1.344
2019.75	34.673	7,455	258.49	6.75	1	0.00	0	34.642	7,240	250.8	1.003	1.040	4.3\%	1.288
2020.25	19.999	7,452	149.03	7.25	0	(35.99)	0	18.663	7,214	134.6	1.003	1.040	4.3\%	1.235
2020.75	20.818	7,511	156.36	7.75	1	(33.22)	0	19.816	7,699	152.6	1.003	1.040	4.3\%	1.184
2021.25	16.601	7,253	120.41	8.25	0	(41.07)	0	17.471	7,672	134.0	1.003	1.040	4.3\%	1.135
2021.75	24.737	8,041	198.92	8.75	1	(20.38)	0	25.388	8,187	207.9	1.003	1.040	4.3\%	1.088
2022.25	24.874	8,513	211.76	9.25	0	(20.43)	0	25.657	8,158	209.3	1.003	1.040	4.3\%	1.043
2022.75	26.216	9,067	237.69	9.75	1	0.00	1	26.066	8,707	226.9				1.000
						Implied Loss Cost								
								Frequency Model	Severity Model	Model				
				A.	Intercept			3.390	(2.183)	(5.700)				
				B.	Time				0.005	0.005				
				c.	2013 Trend Change			0.023	0.056	0.079				
				D.	Seasonality				0.034	0.034				
				E.	Mobility			0.018		0.018				
				F.	New Normal			(0.353)		(0.353)				

Financial Services Regulatory Authority of Ontario
Private Passengers Vehicles (Excluding Farmers)

selected Trend Model: Collision

Data as of $12 / 31 / 22$

Financial Services Regulatory Authority of Ontario
Private Passengers Vehicles (Excluding Farmers)
Selected Trend Model: Comprehensive - Theft Data as of $12 / 31 / 22$

Financial Services Regulatory Authority of Ontario
Private Passengers Vehicles (Excluding Farmers)
Selected Trend Model: Comprehensive - All Other
Data as of 12/31/22

Financial Services Regulatory Authority of Ontario
Private Passengers Vehicles (Excluding Farmers)

Selected Trend Model: Comprehensive - Total

Data as of $12 / 31 / 22$

Financial Services Regulatory Authority of Ontario
Private Passengers Vehicles (Excluding Farmers)

Selected Trend Model: All Perils

Data as of $12 / 31 / 22$

Financial Services Regulatory Authority of Ontario
Private Passengers Vehicles (Excluding Farmers)
Selected Trend Model: Uninsured Auto Data as of $12 / 31 / 22$

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
							$\exp (\mathrm{A}+(1)$	B S Sumproduct (5):)]	$\operatorname{Exp}[\Delta(1) * B]$	$\operatorname{Exp}[[(3) * D]$	$(11) *(12)-1$	$\operatorname{per}(10)$
	Observed			Covariates			Predicted			Incremental Semi-Annual Change		Semi-Annual Trend	Trend Factor to
Time	Frequency (000)	Severity	Loss Cost	Seasonality	2015 Trend	New Normal	Frequency (000)	Severity	Loss Cost	Time	Trend Change		
2011.75	0.278	56,461	15.72		10.00	0			14.6	0.953	1.000	-4.7\%	0.735
2012.25	0.258	39,822	10.29		$0 \quad 0.00$	0			12.3	0.953	1.000	-4.7\%	0.772
2012.75	0.270	41,241	11.13		10.00	0			13.2	0.953	1.000	-4.7\%	0.810
2013.25	0.228	45,998	10.50		$0 \quad 0.00$	0			11.2	0.953	1.000	-4.7\%	0.850
2013.75	0.235	53,393	12.54		10.00	0			12.0	0.953	1.000	-4.7\%	0.893
2014.25	0.219	47,827	10.48		$0 \quad 0.00$	0			10.1	0.953	1.000	-4.7\%	0.937
2014.75	0.223	54,467	12.14		10.00	0			10.9	0.953	1.025	-2.4\%	0.984
2015.25	0.217	44,875	9.72		$0 \quad 0.25$	0			9.4	0.953	1.050	0.1\%	1.008
2015.75	0.195	52,298	10.20		$1 \quad 0.75$	0			10.6	0.953	1.050	0.1\%	1.007
2016.25	0.204	49,631	10.13		$0 \quad 1.25$	0			9.4	0.953	1.050	0.1\%	1.007
2016.75	0.209	54,493	11.39		$1 \quad 1.75$	0			10.6	0.953	1.050	0.1\%	1.006
2017.25	0.193	44,576	8.62		$0 \quad 2.25$	0			9.4	0.953	1.050	0.1\%	1.006
2017.75	0.212	52,298	11.07		$\begin{array}{ll}1 & 2.75\end{array}$	0			10.7	0.953	1.050	0.1\%	1.005
2018.25	0.191	53,685	10.28		$0 \quad 3.25$	0			9.4	0.953	1.050	0.1\%	1.005
2018.75	0.193	54,860	10.58		$1 \quad 3.75$	0			10.7	0.953	1.050	0.1\%	1.004
2019.25	0.176	55,504	9.78		$0 \quad 4.25$	0			9.5	0.953	1.050	0.1\%	1.004
2019.75	0.197	44,282	8.74		4.75	0			10.7	0.953	1.050	0.1\%	1.003
2020.25	0.138	50,252	6.91		$0 \quad 5.25$	0			9.5	0.953	1.050	0.1\%	1.003
2020.75	0.162	63,524	10.31		$1 \quad 5.75$	0			10.7	0.953	1.050	0.1\%	1.002
2021.25	0.149	43,926	6.52		$0 \quad 6.25$	0			9.5	0.953	1.050	0.1\%	1.002
2021.75	0.202	55,141	11.12		$1 \quad 6.75$	0			10.7	0.953	1.050	0.1\%	1.001
2022.25	0.225	46,559	10.49		$\begin{array}{ll}0 & 7.25\end{array}$	0			9.5	0.953	1.050	0.1\%	1.001
2022.75	0.245	45,792	11.24		$1 \begin{array}{ll}1 & 7.75\end{array}$	1			10.7				1.000
							Frequency Model	Severity Model	irect Loss Cost Model				
				A.	Intercept				198.261				
				B.	Time				(0.097)				
				c.	Seasonality				0.122				
				D.	2015 Trend Change				0.098				
				E.	New Normal				0.000				

Appendix G. Inflation Impact on Physical Damage Severity

As shown in the following figures the DCPD, collision, and all perils severity observations follow a similar pattern in which the observed severity increased between 2013 and 2018, followed by a more modest trend until the spike in inflation in the second half of 2021.

Our selected severity models are presented in the first panel in each of the following figures. The selected model was chosen due to the statistical fit with minimal parameters. We recognize these selected models generally underpredict 2018-1 through 2020-1 observations, overpredict the 2020-2 through 2021-2 observations, and underpredict the 2022-1 and 2022-2 observations. Due to the non-optimal residual pattern of these selected severity models, we present two additional models in the second and third panels of each figure:

- The model in the second panel tests the significance of an additional scalar parameter at 2021-2 (coincident with the rise in inflation) For DCPD and collision we attribute this lack of significance to the flattening of the physical damage severity trend directly before the rise in inflation. In general, we find the inclusion of this parameter does not improve the model fit as it does not recognize the flattening between 2018-1 and 2020-1.
- The model in the third panel includes a 2021-2 scalar parameter and a change in trend parameter at 2018-1. Although this model generally improves performance, it is likely overly complex and may overfit the data.

Although the inclusion of both a change in trend and scalar parameter is generally significant for physical damage severity, we believe a parsimonious model is more appropriate to avoid overfitting in this case.

Therefore, our trend rates implied by our selected regression models implicitly include any impact of the rise in inflation up to December 31, 2022.

Figure 35: DCPD - Selected and Two Alternative Trend Models

Figure 36: Collision - Selected and Alternative Severity Trend Models

Figure 37: All Perils - Selected and Alternative Severity Trend Models

Appendix H. "New Normal" Frequency Level

Insurers should consider the degree to which the post-pandemic "new-normal" is expected to impact claims cost during the proposed rate program. An adjustment applicable to all historical accident years may be needed to reflect the reduction in claims frequency expected as a result of the general shift toward a hybrid workplace.

As we consider 2022-2 to be a potential starting point for the "new normal" post-pandemic frequency level we quantify the observed reduction in claims frequency in 2022-2 relative to projected claims frequency implied by our trend analyses presented in Section 8.

In the following figures we project the 2015-2019 accident year period and 2022-2 accident half-year frequency to the average accident date during the prospective period ${ }^{85}$ and present the observed change in frequency level for each major coverage ${ }^{86}$ that was impacted by the pandemic. Under the presumption that the 2022-2 frequency level is a reasonable starting point for the new normal, these estimates may represent an appropriate expectation for frequency levels during the prospective period.

Figure 38: Bodily Injury - 2022-2 Frequency Level

[^43]Figure 39: DCPD - 2022-2 Frequency Level

Figure 40: Accident Benefits - 2022-2 Frequency Level

Figure 41: Collision - 2022-2 Frequency Level

QUALIFICATIONS, ASSUMPTIONS, AND LIMITING CONDITIONS

This report is for the exclusive use of the Oliver Wyman client named herein. This report is not intended for general circulation or publication, nor is it to be reproduced, quoted, or distributed for any purpose without the prior written permission of Oliver Wyman. There are no third-party beneficiaries with respect to this report, and Oliver Wyman does not accept any liability to any third party.

Information furnished by others, upon which all or portions of this report are based, is believed to be reliable but has not been independently verified, unless otherwise expressly indicated. Public information and industry and statistical data are from sources we deem to be reliable; however, we make no representation as to the accuracy or completeness of such information. The findings contained in this report may contain predictions based on current data and historical trends. Any such predictions are subject to inherent risks and uncertainties. Oliver Wyman accepts no responsibility for actual results or future events.

The opinions expressed in this report are valid only for the purpose stated herein and as of the date of this report. No obligation is assumed to revise this report to reflect changes, events, or conditions, which occur subsequent to the date hereof.

All decisions in connection with the implementation or use of advice or recommendations contained in this report are the sole responsibility of the client. This report does not represent investment advice nor does it provide an opinion regarding the fairness of any transaction to any and all parties. In addition, this report does not represent legal, medical, accounting, safety, or other specialized advice. For any such advice, Oliver Wyman recommends seeking and obtaining advice from a qualified professional.

OliverWyman

Oliver Wyman
120 Bremner Boulevard
Suite 800
Toronto, ON M5J OA8

Oliver Wyman

Three Logan Square
1717 Arch Street, Suite 1100
Philadelphia, PA 19103

[^0]: ${ }^{1}$ Our model also includes a one-time scalar shift of -19.1% coincident with the reforms.
 ${ }^{2}$ Our model also includes a one-time scalar shift of -20.7% coincident with the reforms.
 ${ }^{3}$ Our model also includes a one-time scalar shift of $+32.1 \%$ at 2021-2.
 ${ }^{4}$ Our model also includes a one-time scalar shift of $+37.0 \%$ at 2021-2.

[^1]: ${ }^{5}$ Our model also includes a one-time scalar shift of $+32.1 \%$ at 2021-2.
 ${ }^{6}$ Our model also includes a one-time scalar shift of $+37.0 \%$ at 2021-2.
 ${ }^{7}$ Due to the low volume of FA risks, we find the inclusion or exclusion of the FA data does not materially affect our calculated loss trend rates, although the FA experience does have a higher average loss cost per vehicle than the industry.

[^2]: ${ }^{8}$ As discussed more fully in Section 5.4, we observe a limited impact on other coverages through 2022-2.

[^3]: ${ }^{9}$ Past profits are not considered in any selection of assumptions or Benchmarks in this report.

[^4]: ${ }^{10}$ FSCO continued to settle remaining files open on March 31, 2016.

[^5]: ${ }^{11}$ The growth in bodily injury is representative of all mandatory coverages which include bodily injury, property damagetort, direct compensation property damage, accident benefits and uninsured automobile.

[^6]: 12 The number of vehicles is on a semi-annual basis to highlight the seasonal pattern for comprehensive coverage due to the temporary removal of coverage during the first half of the year.

[^7]: ${ }^{13}$ The claims costs presented are on an ultimate basis. See Section 6.2 for more details.
 ${ }^{14}$ External claim settlement costs are reported by insurers for each individual claim to GISA, referred to as allocated loss adjustment expenses. Internal claim expense factors are based on aggregated costs reported to GISA.

[^8]: ${ }^{15}$ For visual ease, the accident half-year loss ratio numerical values are only presented for the second half of each year.

[^9]: ${ }^{16}$ Regardless of reporting approach, these fees, and delay in the receipt of premiums, is considered in calculating the rate level change need.
 ${ }^{17}$ The preliminary 2022 expense data was provided to Oliver Wyman by FSRA.
 ${ }^{18}$ The term "direct written premiums" is in the context of reinsurance and means before any consideration of reinsurance premiums. This is the basis upon which GISA reports the expense ratios.

[^10]: ${ }^{19}$ In addition to the broker, direct writer and agency insurers, FSRA separately identified an "other" category. As the "other" category only represented less than 0.02% of the total premiums, we excluded this segment for simplification purposes.

[^11]: ${ }^{20}$ Federally incorporated insurers are regulated by OSFI and provincially incorporated insurers are regulated by FSRA.
 ${ }^{21}$ Any reference to the term ROI is meant to infer a pre-tax basis.
 ${ }^{22}$ Only insurers reporting to OSFI are included.
 ${ }^{23} 1$ standard deviation is approximately 68% of the total distribution.

[^12]: ${ }^{24}$ In October 2014 a 6\% of premium profit provision was introduced. This was subsequently reduced in October 2016 to the current 5\% rate.
 ${ }^{25}$ Shareholders and managers of the firm consider the return on equity so that they may evaluate the rate of return relative to alternative investments.
 ${ }^{26}$ While the amount of capital supporting private passenger vehicle policies is not explicitly stated by insurers, a common assumption is a notional \$1 of capital for every \$2 of premium. Under this basis, and assuming rates are adequate and an average ROI of 2.5%, insurers would, on average, have an additional 1.25% of premium in addition to the 5% of premium profit provision for a total of 6.25% of premiums. A higher amount of capital would increase the investment income and total profit, and vice versa.

[^13]: ${ }^{27}$ The loss ratios based on the ultimate loss amounts and earned premiums as reported by GISA as of December 31, 2022 in the AUTO 7001 Exhibit.
 ${ }^{28}$ We assume finance fees are netted from the expense ratio and a 4-month delay in the receipt of premiums. Our findings are not sensitive to this assumption.
 ${ }^{29}$ The 2022 discount factor is greater than 1 as the weighted average pre-tax investment yield was negative during the period.

[^14]: ${ }^{30}$ Any reference to loss or claim amount in this report is intended to include ALAE.

[^15]: ${ }^{31}$ By "final" or "ultimate" cost we mean the amount paid by insurance companies at the time that all claims that occur in a particular year have been reported and settled.
 ${ }^{32}$ Accident half-year refers to either the period January 1 through June 30, or July 1 through December 31 of the indicated year. We use the terms "accident half-year" and "semester" (i.e., first semester or second semester; or the June semester or December semester) interchangeably in this report. We also refer to accident half-years or semesters as XXXX-1 or XXXX-2, or XXXX. 1 or $X X X X .2$ where " $X X X X$ " refers to the indicated year.
 ${ }^{33}$ Readers should refer to the E\&Y report for a full discussion of the methodology and approach used by E\&Y.
 ${ }^{34}$ We find EY's severity fitted value estimates for bodily injury derived from our prior regression model are different than our fitted estimates from the same model.

[^16]: ${ }^{35}$ Number of claims per 1,000 insured vehicles.
 ${ }^{36}$ We present a summary of GISA's selected ultimate loss costs, severity and frequency by accident half-year in Appendix B.

[^17]: ${ }^{37}$ We refer to the accident year loss amounts considered in an insurer's rate indications as the "experience period" data. Although the number of years in the experience period varies by insurer depending upon size/credibility, it is most common for insurers to consider 5 years of experience in developing rate indications.
 ${ }^{38}$ Our severity and loss cost estimates include allocated loss adjustment expenses and a provision for the unallocated loss adjustment expenses (ULAE) based on ULAE factors provided by GISA.
 ${ }^{39}$ We use "scalar" and "level change" interchangeably throughout this report.
 ${ }^{40}$ Due to the breadth and depth of our review, not all loss trend models we considered are included in Appendix E .

[^18]: ${ }^{41}$ Although we consider multiple models, we generally only present our final model in Section 8 of this report.

[^19]: ${ }^{42}$ For our calculations, we assume full year policies written on average in the middle of the month uniformly over the year for estimation purposes only.

[^20]: ${ }^{43}$ We find frequency, but not severity has been affected by the COVID-19 pandemic.
 ${ }^{44}$ We test if changes in severity may be attributed to COVID-19 and include a mobility parameter accordingly.
 ${ }^{45}$ http://www.healthdata.org/
 ${ }^{46}$ An alternative is to assign zero weight to the accident year/period data distorted by COVID-19.

[^21]: ${ }^{47}$ As measured by the 12 -month change in CPI.

[^22]: ${ }^{48}$ Rental of passenger vehicles data is Canada-wide data, not Ontario-only data.

[^23]: ${ }^{49}$ We define physical damage coverages as those that pertain to property physical damage. This includes property damage tort, DCPD, collision, comprehensive, all perils, and specified perils. We do not include specified perils in Figure 10 due to additional volatility associated with these coverages.

[^24]: ${ }^{50}$ Bodily injury and accident benefits are long-tailed lines of business, and as such the 2022-2 data observation is subject to significant uncertainty.
 ${ }^{51}$ Forecasting changes to the future inflation level for a parameter is also challenging.

[^25]: ${ }^{52}$ Historical experience period loss data should be first adjusted to remove the impact of COVID-19; and then adjusted to the "new-normal" post-pandemic level.
 ${ }^{53}$ https://www.imf.org/en/Countries/CAN

[^26]: ${ }^{54}$ The rise in severity in 2022-2 is highly dependent upon the a priori methodology used by EY.
 55 The p-value for the reform scalar parameter(s) shift in severity was insignificant.
 ${ }^{56}$ Our statistical tests do not show a level change parameter with a significant p-value at January 1, 2015 or August 1, 2015; or beginning for policies effective June 1, 2016.
 ${ }^{57}$ See Section 7.2 for a discussion of this parameter.
 ${ }^{58}$ As in our prior review we exclude the time parameter as it is generally insignificant over time periods considered in our model.

[^27]: ${ }^{59}=\exp [0.021]-1$
 ${ }^{60}=\exp [-0.056+0.021]-1$

[^28]: ${ }^{61}=\exp [0.033+0.041]-1$
 $62=\exp [-0.022+0.033]-1$
 $63=\exp [-0.022+0.033+0.041]-1$
 ${ }^{64}$ The loss cost adjusted R-squared improves starting at 2009-1, rather than 2007-1.

[^29]: ${ }^{65}=\exp [0.005+0.056]-1$
 ${ }^{66}=\exp [0.005]-1$
 ${ }^{67}=\exp [0.023+0.005+0.056]-1$

[^30]: ${ }^{68}$ The rise in severity in 2022-2 is highly dependent upon the a priori methodology used by EY.

[^31]: ${ }^{69}$ These reform parameters assign weights of approximately $1 \%, 33 \%, 83 \%$, and 100% to accident half-years 2016-1, 2016-$2,2017-1$, and 2017-2, respectively. These weights represent the proportion of the respective accident half-year claim amounts that are subject to the new reform based on a parallelogram method assuming annual accident periods and policies written uniformly throughout the year.
 ${ }^{70}$ 2011-1 appears to be an unusually high point, so we, therefore, begin at 2011-2.
 ${ }^{71}=\exp [-0.272]-1$
 ${ }^{72}=\exp [0.025+0.042]-1$
 ${ }^{73}=\exp [.025+0.042-0.036]-1$

[^32]: ${ }^{74}=\exp [0.025+0.059]-1$

[^33]: ${ }^{75}$ In our prior review, we did not observe sufficient support for a scalar factor at 2021-2.

[^34]: ${ }^{76}=\exp [0.037+0.059]-1$

[^35]: ${ }^{77}$ Our model also includes a one-time scalar shift of -20.7% coincident with the reforms.
 ${ }^{78}$ Our model also includes a one-time scalar shift of -23.1% coincident with the reforms.
 ${ }^{79}$ Our model also includes a one-time scalar shift of -12.7% coincident with the reforms.
 ${ }^{80}$ Our model also includes a one-time scalar shift of $+37.0 \%$ at 2021-2.
 ${ }^{81}$ Our model also includes a one-time scalar shift of $+37.0 \%$ at 2021-2.

[^36]: ${ }^{82}$ Our model also includes a one-time scalar shift of -19.1% coincident with the reforms.
 ${ }^{83}$ Our model also includes a one-time scalar shift of $+32.1 \%$ at 2021-2.
 ${ }^{84}$ Our model also includes a one-time scalar shift of $+32.1 \%$ at 2021-2.

[^37]: Maturity (in
 Months)

[^38]: Maturity (in
 Months)

[^39]: Maturity (in
 Months)

[^40]: Maturity (in
 Months)

[^41]: Maturity (in
 Months)

[^42]: Maturity (in
 Months)

[^43]: ${ }^{85}$ We assume an average policy year of April 1, 2024 to March 1, 2025 and an average accident date of April 1, 2025.
 ${ }^{86}$ We exclude comprehensive from this analysis as we do not expect the frequency level to differ from pre-pandemic levels as it is not a "moving" coverage.

